BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19238430)

  • 21. Development of nervous systems to metamorphosis in feeding and non-feeding echinoid larvae, the transition from bilateral to radial symmetry.
    Katow H; Elia L; Byrne M
    Dev Genes Evol; 2009 Feb; 219(2):67-77. PubMed ID: 19031082
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gene expression analysis of three homeobox genes throughout early and late development of a feather star Anneissia japonica.
    Omori A; Shibata TF; Akasaka K
    Dev Genes Evol; 2020 Jul; 230(4):305-314. PubMed ID: 32671457
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ophiuroid Skeleton Ontogeny Reveals Homologies Among Skeletal Plates of Adults: A Study of Amphiura filiformis, Amphiura stimpsonii and Ophiophragmus filograneus (Echinodermata).
    Hendler G
    Biol Bull; 1988 Feb; 174(1):20-29. PubMed ID: 29314878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immunocytochemical studies reveal novel neural structures in nemertean pilidium larvae and provide evidence for incorporation of larval components into the juvenile nervous system.
    Hindinger S; Schwaha T; Wanninger A
    Front Zool; 2013 May; 10(1):31. PubMed ID: 23701905
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Embryonic and post-embryonic development of the polyclad flatworm Maritigrella crozieri; implications for the evolution of spiralian life history traits.
    Rawlinson KA
    Front Zool; 2010 Apr; 7():12. PubMed ID: 20426837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Specification of ectoderm restricts the size of the animal plate and patterns neurogenesis in sea urchin embryos.
    Yaguchi S; Yaguchi J; Burke RD
    Development; 2006 Jun; 133(12):2337-46. PubMed ID: 16687447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of the larval nervous system of the sand dollar, Dendraster excentricus.
    Burke RD
    Cell Tissue Res; 1983; 229(1):145-54. PubMed ID: 6831540
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The structure of the nervous system of the pluteus larva of Strongylocentrotus purpuratus.
    Burke RD
    Cell Tissue Res; 1978 Jul; 191(2):233-47. PubMed ID: 679266
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Developmental origin of the adult nervous system in a holothurian: an attempt to unravel the enigma of neurogenesis in echinoderms.
    Mashanov VS; Zueva OR; Heinzeller T; Aschauer B; Dolmatov IY
    Evol Dev; 2007; 9(3):244-56. PubMed ID: 17501748
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nervous system development in feeding and nonfeeding asteroid larvae and the early juvenile.
    Elia L; Selvakumaraswamy P; Byrne M
    Biol Bull; 2009 Jun; 216(3):322-34. PubMed ID: 19556597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The evolution of the serotonergic nervous system.
    Hay-Schmidt A
    Proc Biol Sci; 2000 Jun; 267(1448):1071-9. PubMed ID: 10885511
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The development and metamorphosis of the indirect developing acorn worm
    Gonzalez P; Jiang JZ; Lowe CJ
    Front Zool; 2018; 15():26. PubMed ID: 29977319
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of the five primary podia from the coeloms of a sea star larva: homology with the echinoid echinoderms and other deuterostomes.
    Morris VB; Selvakumaraswamy P; Whan R; Byrne M
    Proc Biol Sci; 2009 Apr; 276(1660):1277-84. PubMed ID: 19129140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of nitric oxide synthase-defined neurons in the sea urchin larval ciliary band and evidence for a chemosensory function during metamorphosis.
    Bishop CD; Brandhorst BP
    Dev Dyn; 2007 Jun; 236(6):1535-46. PubMed ID: 17474125
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolution of basal deuterostome nervous systems.
    Holland LZ
    J Exp Biol; 2015 Feb; 218(Pt 4):637-45. PubMed ID: 25696827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure and metamorphic remodeling of the larval nervous system and musculature of Phoronis pallida (Phoronida).
    Santagata S
    Evol Dev; 2002; 4(1):28-42. PubMed ID: 11868656
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of the larval anterior neurogenic domains of Terebratalia transversa (Brachiopoda) provides insights into the diversification of larval apical organs and the spiralian nervous system.
    Santagata S; Resh C; Hejnol A; Martindale MQ; Passamaneck YJ
    Evodevo; 2012 Jan; 3():3. PubMed ID: 22273002
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bryozoan larvae as mosaics of multifunctional ciliary fields: Ultrastructure of the sensory organs of Bugula solonifera (Cheilostomata: Cellularioidea).
    Reed CG; Ninos JM; Woollacott RM
    J Morphol; 1988 Aug; 197(2):127-145. PubMed ID: 29874897
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scope for Developmental Plasticity of Feeding Larvae of a Holothuroid, Contrasted with Other Echinoderm Larvae.
    Strathmann RR
    Biol Bull; 2022 Feb; 242(1):1-15. PubMed ID: 35245160
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of the nervous system in Phoronopsis harmeri (Lophotrochozoa, Phoronida) reveals both deuterostome- and trochozoan-like features.
    Temereva E; Wanninger A
    BMC Evol Biol; 2012 Jul; 12():121. PubMed ID: 22827441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.