These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 19238730)
1. Specification process of animal plate in the sea urchin embryo. Sasaki H; Kominami T Dev Growth Differ; 2008 Sep; 50(7):595-606. PubMed ID: 19238730 [TBL] [Abstract][Full Text] [Related]
2. Subequatorial cytoplasm plays an important role in ectoderm patterning in the sea urchin embryo. Kominami T; Akagawa M; Takata H Dev Growth Differ; 2006 Feb; 48(2):101-15. PubMed ID: 16512854 [TBL] [Abstract][Full Text] [Related]
3. A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo. McClay DR; Peterson RE; Range RC; Winter-Vann AM; Ferkowicz MJ Development; 2000 Dec; 127(23):5113-22. PubMed ID: 11060237 [TBL] [Abstract][Full Text] [Related]
4. beta-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo. Wikramanayake AH; Huang L; Klein WH Proc Natl Acad Sci U S A; 1998 Aug; 95(16):9343-8. PubMed ID: 9689082 [TBL] [Abstract][Full Text] [Related]
5. Micromeres are required for normal vegetal plate specification in sea urchin embryos. Ransick A; Davidson EH Development; 1995 Oct; 121(10):3215-22. PubMed ID: 7588056 [TBL] [Abstract][Full Text] [Related]
6. Late specification of Veg1 lineages to endodermal fate in the sea urchin embryo. Ransick A; Davidson EH Dev Biol; 1998 Mar; 195(1):38-48. PubMed ID: 9520322 [TBL] [Abstract][Full Text] [Related]
7. Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos. Ishizuka Y; Minokawa T; Amemiya S Dev Genes Evol; 2001 Feb; 211(2):83-8. PubMed ID: 11455418 [TBL] [Abstract][Full Text] [Related]
8. A regulatory gene network that directs micromere specification in the sea urchin embryo. Oliveri P; Carrick DM; Davidson EH Dev Biol; 2002 Jun; 246(1):209-28. PubMed ID: 12027443 [TBL] [Abstract][Full Text] [Related]
9. A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula. Ruffins SW; Ettensohn CA Development; 1996 Jan; 122(1):253-63. PubMed ID: 8565837 [TBL] [Abstract][Full Text] [Related]
10. The bases for and timing of regional specification during larval development in Phoronis. Freeman G Dev Biol; 1991 Sep; 147(1):157-73. PubMed ID: 1879606 [TBL] [Abstract][Full Text] [Related]
11. Ca(2+) in specification of vegetal cell fate in early sea urchin embryos. Yazaki I J Exp Biol; 2001 Mar; 204(Pt 5):823-34. PubMed ID: 11171406 [TBL] [Abstract][Full Text] [Related]
12. The micro1 gene is necessary and sufficient for micromere differentiation and mid/hindgut-inducing activity in the sea urchin embryo. Yamazaki A; Kawabata R; Shiomi K; Amemiya S; Sawaguchi M; Mitsunaga-Nakatsubo K; Yamaguchi M Dev Genes Evol; 2005 Sep; 215(9):450-59. PubMed ID: 16078091 [TBL] [Abstract][Full Text] [Related]
13. A complete second gut induced by transplanted micromeres in the sea urchin embryo. Ransick A; Davidson EH Science; 1993 Feb; 259(5098):1134-8. PubMed ID: 8438164 [TBL] [Abstract][Full Text] [Related]
14. Evolutionary modification of specification for the endomesoderm in the direct developing echinoid Peronella japonica: loss of the endomesoderm-inducing signal originating from micromeres. Iijima M; Ishizuka Y; Nakajima Y; Amemiya S; Minokawa T Dev Genes Evol; 2009 May; 219(5):235-47. PubMed ID: 19437036 [TBL] [Abstract][Full Text] [Related]
15. Timing of the potential of micromere-descendants in echinoid embryos to induce endoderm differentiation of mesomere-descendants. Minokawa T; Amemiya S Dev Growth Differ; 1999 Oct; 41(5):535-47. PubMed ID: 10545026 [TBL] [Abstract][Full Text] [Related]
16. Change in the adhesive properties of blastomeres during early cleavage stages in sea urchin embryo. Masui M; Kominami T Dev Growth Differ; 2001 Feb; 43(1):43-53. PubMed ID: 11148451 [TBL] [Abstract][Full Text] [Related]
17. Initial observation of potential factors involved in the specification process of oral-aboral axis in the sand dollar Scaphechinus mirabilis. Satoh K; Kominami T Dev Growth Differ; 2008 Oct; 50(8):675-87. PubMed ID: 18826473 [TBL] [Abstract][Full Text] [Related]
18. A mathematical model of cleavage. Akiyama M; Tero A; Kobayashi R J Theor Biol; 2010 May; 264(1):84-94. PubMed ID: 20045703 [TBL] [Abstract][Full Text] [Related]
19. Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo. Logan CY; Miller JR; Ferkowicz MJ; McClay DR Development; 1999 Jan; 126(2):345-57. PubMed ID: 9847248 [TBL] [Abstract][Full Text] [Related]
20. Primary mesenchyme cell patterning during the early stages following ingression. Peterson RE; McClay DR Dev Biol; 2003 Feb; 254(1):68-78. PubMed ID: 12606282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]