These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 19238964)

  • 1. Subcellular distribution of cadmium in two aquatic invertebrates: change over time and relationship to Cd assimilation and loss by a predatory insect.
    Dubois M; Hare L
    Environ Sci Technol; 2009 Jan; 43(2):356-61. PubMed ID: 19238964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selenium assimilation and loss by an insect predator and its relationship to Se subcellular partitioning in two prey types.
    Dubois M; Hare L
    Environ Pollut; 2009 Mar; 157(3):772-7. PubMed ID: 19110352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The internal distribution of nickel and thallium in two freshwater invertebrates and its relevance to trophic transfer.
    Dumas J; Hare L
    Environ Sci Technol; 2008 Jul; 42(14):5144-9. PubMed ID: 18754361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subcellular distribution of Cd in the aquatic oligochaete Tubifex tubifex, implications for trophic availability and toxicity.
    Steen Redeker E; van Campenhout K; Bervoets L; Reijnders H; Blust R
    Environ Pollut; 2007 Jul; 148(1):166-75. PubMed ID: 17240028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake and subcellular distributions of cadmium and selenium in transplanted aquatic insect larvae.
    Rosabal M; Ponton DE; Campbell PG; Hare L
    Environ Sci Technol; 2014 Nov; 48(21):12654-61. PubMed ID: 25268462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assimilation efficiencies of Cd and Zn in the common carp (Cyprinus carpio): effects of metal concentration, temperature and prey type.
    Van Campenhout K; Bervoets L; Blust R
    Environ Pollut; 2007 Feb; 145(3):905-14. PubMed ID: 16764974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationships between free cadmium ion activity in seawater, cadmium accumulation and subcellular distribution, and growth in polychaetes.
    Jenkins KD; Sanders BM
    Environ Health Perspect; 1986 Mar; 65():205-10. PubMed ID: 3709441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cadmium-induced production of a metallothioneinlike protein in Tubifex tubifex (Oligochaeta) and Chironomus riparius (Diptera): correlation with reproduction and growth.
    Gillis PL; Diener LC; Reynoldson TB; Dixon DG
    Environ Toxicol Chem; 2002 Sep; 21(9):1836-44. PubMed ID: 12206423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trophic transfer of Cd from larval chironomids (Chironomus riparius) exposed via sediment or waterborne routes, to zebrafish (Danio rerio): tissue-specific and subcellular comparisons.
    Béchard KM; Gillis PL; Wood CM
    Aquat Toxicol; 2008 Dec; 90(4):310-21. PubMed ID: 18950874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uses of subcellular metal distribution in prey to predict metal bioaccumulation and internal exposure in a predator.
    Cheung MS; Wang WX
    Environ Toxicol Chem; 2008 May; 27(5):1160-6. PubMed ID: 18419191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A field experiment to determine the relative importance of prey and water as sources of As, Cd, Co, Cu, Pb, and Zn for the aquatic invertebrate Sialis velata.
    Croisetière L; Hare L; Tessier A
    Environ Sci Technol; 2006 Feb; 40(3):873-9. PubMed ID: 16509331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling geochemical and biological approaches to assess the availability of cadmium in freshwater sediment.
    Dabrin A; Durand CL; Garric J; Geffard O; Ferrari BJ; Coquery M
    Sci Total Environ; 2012 May; 424():308-15. PubMed ID: 22446110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transfer and efflux of cadmium and silver in marine snails and fish fed pre-exposed mussel prey.
    Cheung MS; Zhang L; Wang WX
    Environ Toxicol Chem; 2007 Jun; 26(6):1172-8. PubMed ID: 17571682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nickel dynamics in the lakewater metal biomonitor Chaoborus.
    Ponton DE; Hare L
    Aquat Toxicol; 2010 Jan; 96(1):37-43. PubMed ID: 19846223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrasting effects of fish predation on benthic versus emerging prey: a meta-analysis.
    Wesner JS
    Oecologia; 2016 Apr; 180(4):1205-11. PubMed ID: 26747266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of uranium-contaminated sediments on the bioturbation activity of Chironomus riparius larvae (Insecta, Diptera) and Tubifex tubifex worms (Annelida, Tubificidae).
    Lagauzère S; Boyer P; Stora G; Bonzom JM
    Chemosphere; 2009 Jul; 76(3):324-34. PubMed ID: 19403158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assimilation of Cd and Cu by the carnivorous plant Sarracenia leucophylla raf. fed contaminated prey.
    Moody C; Green ID
    Environ Sci Technol; 2010 Mar; 44(5):1610-6. PubMed ID: 20141102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of prey type on nickel and thallium assimilation, subcellular distribution and effects in juvenile fathead minnows (Pimephales promelas).
    Lapointe D; Gentès S; Ponton DE; Hare L; Couture P
    Environ Sci Technol; 2009 Nov; 43(22):8665-70. PubMed ID: 20028068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Chironomus riparius (Diptera, Chironomidae) and Tubifex tubifex (Annelida, Oligochaeta) on oxygen uptake by sediments. Consequences of uranium contamination.
    Lagauzère S; Pischedda L; Cuny P; Gilbert F; Stora G; Bonzom JM
    Environ Pollut; 2009 Apr; 157(4):1234-42. PubMed ID: 19121883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Foraging and vulnerability traits modify predator-prey body mass allometry: freshwater macroinvertebrates as a case study.
    Klecka J; Boukal DS
    J Anim Ecol; 2013 Sep; 82(5):1031-41. PubMed ID: 23869526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.