These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 19239065)

  • 1. Stress shielding and stress concentration of contemporary epiphyseal hip prostheses.
    Cristofolini L; Juszczyk M; Taddei F; Field RE; Rushton N; Viceconti M
    Proc Inst Mech Eng H; 2009 Jan; 223(1):27-44. PubMed ID: 19239065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A numerical study of failure mechanisms in the cemented resurfaced femur: effects of interface characteristics and bone remodelling.
    Pal B; Gupta S; New AM
    Proc Inst Mech Eng H; 2009 May; 223(4):471-84. PubMed ID: 19499837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element analysis of the resurfaced femoral head.
    Taylor M
    Proc Inst Mech Eng H; 2006 Feb; 220(2):289-97. PubMed ID: 16669395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prosthesis design and stress profile after hip resurfacing: a finite element analysis.
    Heijink A; Zobitz ME; Nuyts R; Morrey BF; An KN
    J Orthop Surg (Hong Kong); 2008 Dec; 16(3):326-32. PubMed ID: 19126900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone remodelling inside a cemented resurfaced femoral head.
    Gupta S; New AM; Taylor M
    Clin Biomech (Bristol, Avon); 2006 Jul; 21(6):594-602. PubMed ID: 16542761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A measurement of proximal femur strain with total hip arthroplasty.
    Crowninshield RD; Pedersen DR; Brand RA
    J Biomech Eng; 1980 Aug; 102(3):230. PubMed ID: 19530805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary stability and strain distribution of cementless hip stems as a function of implant design.
    Bieger R; Ignatius A; Decking R; Claes L; Reichel H; Dürselen L
    Clin Biomech (Bristol, Avon); 2012 Feb; 27(2):158-64. PubMed ID: 21889243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in strain distribution of loaded proximal femora caused by different types of cementless femoral stems.
    Decking R; Puhl W; Simon U; Claes LE
    Clin Biomech (Bristol, Avon); 2006 Jun; 21(5):495-501. PubMed ID: 16457913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design considerations for ceramic resurfaced femoral head: effect of interface characteristics on failure mechanisms.
    Pal B; Gupta S; New AM
    Comput Methods Biomech Biomed Engin; 2010; 13(2):143-55. PubMed ID: 19787497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the change in stem length on the load transfer and bone remodelling for a cemented resurfaced femur.
    Pal B; Gupta S; New AM
    J Biomech; 2010 Nov; 43(15):2908-14. PubMed ID: 20728891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain and micromotion in intact and resurfaced composite femurs: experimental and numerical investigations.
    Pal B; Gupta S; New AM; Browne M
    J Biomech; 2010 Jul; 43(10):1923-30. PubMed ID: 20392448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of primary stability on load transfer and bone remodelling within the uncemented resurfaced femur.
    Pal B; Gupta S
    Proc Inst Mech Eng H; 2011 Jun; 225(6):549-61. PubMed ID: 22034739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subject specific finite element analysis of stress shielding around a cementless femoral stem.
    Pettersen SH; Wik TS; Skallerud B
    Clin Biomech (Bristol, Avon); 2009 Feb; 24(2):196-202. PubMed ID: 19103468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Influence on load transfer of different femoral neck endoprostheses].
    Steinhauser E; Ellenrieder M; Gruber G; Busch R; Gradinger R; Mittelmeier W
    Z Orthop Ihre Grenzgeb; 2006; 144(4):386-93. PubMed ID: 16941296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method of quantification of stress shielding in the proximal femur using hierarchical computational modeling.
    Be'ery-Lipperman M; Gefen A
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):35-44. PubMed ID: 16880155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of micromotion initiation of an implanted femur under physiological loads and constraints using the finite element method.
    Andreaus U; Colloca M
    Proc Inst Mech Eng H; 2009 Jul; 223(5):589-605. PubMed ID: 19623912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of modular tapered fluted stems on proximal stress shielding in the human femur.
    Hnat WP; Conway JS; Malkani AL; Yakkanti MR; Voor MJ
    J Arthroplasty; 2009 Sep; 24(6):957-62. PubMed ID: 18848422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain pattern following surface replacement of the hip.
    Ganapathi M; Evans S; Roberts P
    Proc Inst Mech Eng H; 2008 Jan; 222(1):13-8. PubMed ID: 18335714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of size and CCD-angle of a short stem hip arthroplasty on strain patterns of the proximal femur - an experimental study.
    Floerkemeier T; Budde S; Hurschler C; Lewinski G; Windhagen H; Gronewold J
    Acta Bioeng Biomech; 2017; 19(1):141-149. PubMed ID: 28552922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain distribution in the proximal human femoral metaphysis.
    Cristofolini L; Juszczyk M; Taddei F; Viceconti M
    Proc Inst Mech Eng H; 2009 Apr; 223(3):273-88. PubMed ID: 19405434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.