These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 19239070)

  • 21. Are postural responses to backward and forward perturbations processed by different neural circuits?
    Nonnekes J; Scotti A; Oude Nijhuis LB; Smulders K; Queralt A; Geurts AC; Bloem BR; Weerdesteyn V
    Neuroscience; 2013 Aug; 245():109-20. PubMed ID: 23624061
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design and preliminary testing of a low-cost balance perturbation system for the evaluation of real life postural adjustment on public transport.
    Favier CD; Deane JA; McGregor AH; Phillips ATM
    J Med Eng Technol; 2019 Aug; 43(6):356-362. PubMed ID: 31622123
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss.
    Bloem BR; Allum JH; Carpenter MG; Verschuuren JJ; Honegger F
    Exp Brain Res; 2002 Jan; 142(1):91-107. PubMed ID: 11797087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anticipatory postural control strategies related to predictive perturbations.
    Laessoe U; Voigt M
    Gait Posture; 2008 Jul; 28(1):62-8. PubMed ID: 18023353
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Plantar pressure platform as clinical assesment tool in the analysis of foot posture with the foot posture index].
    Gijon-Nogueron G; Lopezosa-Reca E; Cervera-Marin JA; Martinez-Nova A; Sanchez-Rodriguez R; Van Alsenoy K; De Schepper J
    Z Orthop Unfall; 2014 Feb; 152(1):68-73. PubMed ID: 24578117
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast corrective responses are evoked by perturbations approaching the natural variability of posture and movement tasks.
    Crevecoeur F; Kurtzer I; Scott SH
    J Neurophysiol; 2012 May; 107(10):2821-32. PubMed ID: 22357792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Age-related changes in postural responses to externally- and self-triggered continuous perturbations.
    Bugnariu N; Sveistrup H
    Arch Gerontol Geriatr; 2006; 42(1):73-89. PubMed ID: 16084609
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Midfrontal theta dynamics index the monitoring of postural stability.
    Stokkermans M; Solis-Escalante T; Cohen MX; Weerdesteyn V
    Cereb Cortex; 2023 Mar; 33(7):3454-3466. PubMed ID: 36066445
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A simple new device to examine human stance: the totter-slab.
    Roth R; Wank V; Müller O; Hochwald H; Günther M
    Biomed Tech (Berl); 2010 Feb; 55(1):27-38. PubMed ID: 20128743
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Feet distance and static postural balance: implication on the role of natural stance.
    Kim JW; Kwon Y; Jeon HM; Bang MJ; Jun JH; Eom GM; Lim DH
    Biomed Mater Eng; 2014; 24(6):2681-8. PubMed ID: 25226972
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High contextual interference in perturbation-based balance training leads to persistent and generalizable stability gains of compensatory limb movements.
    Takazono PS; Ribeiro de Souza C; Ávila de Oliveira J; Coelho DB; Teixeira LA
    Exp Brain Res; 2020 May; 238(5):1249-1263. PubMed ID: 32303810
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automated postural responses are modified in a functional manner by instruction.
    Weerdesteyn V; Laing AC; Robinovitch SN
    Exp Brain Res; 2008 Apr; 186(4):571-80. PubMed ID: 18193411
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A device for the evaluation of sitting and reach balance in people in wheelchairs and standing.
    Petrofsky JS
    J Med Eng Technol; 2006; 30(6):358-67. PubMed ID: 17060164
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The balance recovery mechanisms against unexpected forward perturbation.
    Hwang S; Tae K; Sohn R; Kim J; Son J; Kim Y
    Ann Biomed Eng; 2009 Aug; 37(8):1629-37. PubMed ID: 19472056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The capacity to adapt to changing balance threats: a comparison of children with cerebral palsy and typically developing children.
    Burtner PA; Woollacott MH; Craft GL; Roncesvalles MN
    Dev Neurorehabil; 2007; 10(3):249-60. PubMed ID: 17564865
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Postural responses to multidirectional stance perturbations in cerebellar ataxia.
    Bakker M; Allum JH; Visser JE; Grüneberg C; van de Warrenburg BP; Kremer BH; Bloem BR
    Exp Neurol; 2006 Nov; 202(1):21-35. PubMed ID: 16808916
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Posture-movement responses to stance perturbations and upper limb fatigue during a repetitive pointing task.
    Fuller JR; Fung J; Côté JN
    Hum Mov Sci; 2013 Aug; 32(4):618-32. PubMed ID: 24054899
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Postural control and detection of slip/fall initiation in the elderly population.
    Kim BJ; Robinson CJ
    Ergonomics; 2005 Jul; 48(9):1065-85. PubMed ID: 16251148
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental muscle pain challenges the postural stability during quiet stance and unexpected posture perturbation.
    Hirata RP; Ervilha UF; Arendt-Nielsen L; Graven-Nielsen T
    J Pain; 2011 Aug; 12(8):911-9. PubMed ID: 21680253
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of sway using vibrotactile feedback of body tilt in patients with moderate and severe postural control deficits.
    Wall C; Kentala E
    J Vestib Res; 2005; 15(5-6):313-25. PubMed ID: 16614476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.