These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
631 related articles for article (PubMed ID: 19239191)
1. Dynamics of coalescence of plugs with a hydrophilic wetting layer induced by flow in a microfluidic chemistrode. Liu Y; Ismagilov RF Langmuir; 2009 Mar; 25(5):2854-9. PubMed ID: 19239191 [TBL] [Abstract][Full Text] [Related]
2. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
3. Molecular simulations of droplet coalescence in oil/water/surfactant systems. Rekvig L; Frenkel D J Chem Phys; 2007 Oct; 127(13):134701. PubMed ID: 17919037 [TBL] [Abstract][Full Text] [Related]
4. Using TIRF microscopy to quantify and confirm efficient mass transfer at the substrate surface of the chemistrode. Chen D; Du W; Ismagilov RF New J Phys; 2009; 11(31):75017. PubMed ID: 19809528 [TBL] [Abstract][Full Text] [Related]
5. Surfactant-enhanced liquid-liquid extraction in microfluidic channels with inline electric-field enhanced coalescence. Kralj JG; Schmidt MA; Jensen KF Lab Chip; 2005 May; 5(5):531-5. PubMed ID: 15856090 [TBL] [Abstract][Full Text] [Related]
6. Simulation of droplet formation and coalescence using lattice Boltzmann-based single-phase model. Xing XQ; Butler DL; Ng SH; Wang Z; Danyluk S; Yang C J Colloid Interface Sci; 2007 Jul; 311(2):609-18. PubMed ID: 17434175 [TBL] [Abstract][Full Text] [Related]
7. Droplet fusion by alternating current (AC) field electrocoalescence in microchannels. Chabert M; Dorfman KD; Viovy JL Electrophoresis; 2005 Oct; 26(19):3706-15. PubMed ID: 16136526 [TBL] [Abstract][Full Text] [Related]
8. Wetting-induced coalescence of nanoliter drops as microreactors in microfluidics. Deng NN; Sun J; Wang W; Ju XJ; Xie R; Chu LY ACS Appl Mater Interfaces; 2014 Mar; 6(6):3817-21. PubMed ID: 24588741 [TBL] [Abstract][Full Text] [Related]
9. Experimental Investigation of the Orthokinetic Coalescence Efficiency of Droplets in Simple Shear Flow. Mousa H; Agterof W; Mellema J J Colloid Interface Sci; 2001 Aug; 240(1):340-348. PubMed ID: 11446817 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical generation of gradients in surfactant concentration across microfluidic channels. Liu X; Abbott NL Anal Chem; 2009 Jan; 81(2):772-81. PubMed ID: 19086794 [TBL] [Abstract][Full Text] [Related]
11. Wetting characteristics of aqueous rhamnolipids solutions. Ozdemir G; Malayoglu U Colloids Surf B Biointerfaces; 2004 Nov; 39(1-2):1-7. PubMed ID: 15542333 [TBL] [Abstract][Full Text] [Related]
15. Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties. Xu JH; Luo GS; Li SW; Chen GG Lab Chip; 2006 Jan; 6(1):131-6. PubMed ID: 16372080 [TBL] [Abstract][Full Text] [Related]
16. Morphological transitions of liquid droplets on circular surface domains. Blecua P; Brinkmann M; Lipowsky R; Kierfeld J Langmuir; 2009 Dec; 25(23):13493-502. PubMed ID: 19746938 [TBL] [Abstract][Full Text] [Related]
17. Coalescence and splitting of confined droplets at microfluidic junctions. Christopher GF; Bergstein J; End NB; Poon M; Nguyen C; Anna SL Lab Chip; 2009 Apr; 9(8):1102-9. PubMed ID: 19350092 [TBL] [Abstract][Full Text] [Related]
18. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows. Mulligan MK; Rothstein JP Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665 [TBL] [Abstract][Full Text] [Related]
20. General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting. Fan SK; Hsieh TH; Lin DY Lab Chip; 2009 May; 9(9):1236-42. PubMed ID: 19370242 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]