These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

631 related articles for article (PubMed ID: 19239191)

  • 1. Dynamics of coalescence of plugs with a hydrophilic wetting layer induced by flow in a microfluidic chemistrode.
    Liu Y; Ismagilov RF
    Langmuir; 2009 Mar; 25(5):2854-9. PubMed ID: 19239191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular simulations of droplet coalescence in oil/water/surfactant systems.
    Rekvig L; Frenkel D
    J Chem Phys; 2007 Oct; 127(13):134701. PubMed ID: 17919037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using TIRF microscopy to quantify and confirm efficient mass transfer at the substrate surface of the chemistrode.
    Chen D; Du W; Ismagilov RF
    New J Phys; 2009; 11(31):75017. PubMed ID: 19809528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant-enhanced liquid-liquid extraction in microfluidic channels with inline electric-field enhanced coalescence.
    Kralj JG; Schmidt MA; Jensen KF
    Lab Chip; 2005 May; 5(5):531-5. PubMed ID: 15856090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of droplet formation and coalescence using lattice Boltzmann-based single-phase model.
    Xing XQ; Butler DL; Ng SH; Wang Z; Danyluk S; Yang C
    J Colloid Interface Sci; 2007 Jul; 311(2):609-18. PubMed ID: 17434175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Droplet fusion by alternating current (AC) field electrocoalescence in microchannels.
    Chabert M; Dorfman KD; Viovy JL
    Electrophoresis; 2005 Oct; 26(19):3706-15. PubMed ID: 16136526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wetting-induced coalescence of nanoliter drops as microreactors in microfluidics.
    Deng NN; Sun J; Wang W; Ju XJ; Xie R; Chu LY
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):3817-21. PubMed ID: 24588741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Investigation of the Orthokinetic Coalescence Efficiency of Droplets in Simple Shear Flow.
    Mousa H; Agterof W; Mellema J
    J Colloid Interface Sci; 2001 Aug; 240(1):340-348. PubMed ID: 11446817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical generation of gradients in surfactant concentration across microfluidic channels.
    Liu X; Abbott NL
    Anal Chem; 2009 Jan; 81(2):772-81. PubMed ID: 19086794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wetting characteristics of aqueous rhamnolipids solutions.
    Ozdemir G; Malayoglu U
    Colloids Surf B Biointerfaces; 2004 Nov; 39(1-2):1-7. PubMed ID: 15542333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioactive heparin immobilized onto microfluidic channels in poly(dimethylsiloxane) results in hydrophilic surface properties.
    Thorslund S; Sanchez J; Larsson R; Nikolajeff F; Bergquist J
    Colloids Surf B Biointerfaces; 2005 Dec; 46(4):240-7. PubMed ID: 16352425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wetting properties at the surface of iota-carrageenan-based edible films.
    Karbowiak T; Debeaufort F; Champion D; Voilley A
    J Colloid Interface Sci; 2006 Feb; 294(2):400-10. PubMed ID: 16259994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partial wetting gas-liquid segmented flow microreactor.
    Kazemi Oskooei SA; Sinton D
    Lab Chip; 2010 Jul; 10(13):1732-4. PubMed ID: 20383398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties.
    Xu JH; Luo GS; Li SW; Chen GG
    Lab Chip; 2006 Jan; 6(1):131-6. PubMed ID: 16372080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphological transitions of liquid droplets on circular surface domains.
    Blecua P; Brinkmann M; Lipowsky R; Kierfeld J
    Langmuir; 2009 Dec; 25(23):13493-502. PubMed ID: 19746938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coalescence and splitting of confined droplets at microfluidic junctions.
    Christopher GF; Bergstein J; End NB; Poon M; Nguyen C; Anna SL
    Lab Chip; 2009 Apr; 9(8):1102-9. PubMed ID: 19350092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows.
    Mulligan MK; Rothstein JP
    Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contact angle saturation in electrowetting.
    Quinn A; Sedev R; Ralston J
    J Phys Chem B; 2005 Apr; 109(13):6268-75. PubMed ID: 16851696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting.
    Fan SK; Hsieh TH; Lin DY
    Lab Chip; 2009 May; 9(9):1236-42. PubMed ID: 19370242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.