These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 19239222)

  • 1. Defects in graphene-based twisted nanoribbons: structural, electronic, and optical properties.
    Caetano EW; Freire VN; dos Santos SG; Albuquerque EL; Galvão DS; Sato F
    Langmuir; 2009 Apr; 25(8):4751-9. PubMed ID: 19239222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Möbius and twisted graphene nanoribbons: stability, geometry, and electronic properties.
    Caetano EW; Freire VN; Dos Santos SG; Galvão DS; Sato F
    J Chem Phys; 2008 Apr; 128(16):164719. PubMed ID: 18447491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical graphene nanoribbon assemblies feature unique electronic and mechanical properties.
    Xu Z; Buehler MJ
    Nanotechnology; 2009 Sep; 20(37):375704. PubMed ID: 19706941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical absorption of tetraphenylporphyrin thin films in UV-vis-NIR region.
    El-Nahass MM; Zeyada HM; Aziz MS; Makhlouf MM
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Nov; 62(1-3):11-5. PubMed ID: 16257686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Half-metallic graphene nanoribbons.
    Son YW; Cohen ML; Louie SG
    Nature; 2006 Nov; 444(7117):347-9. PubMed ID: 17108960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical absorption of tetraphenylporphyrin thin films in UV-vis-NIR region.
    El-Nahass MM; Zeyada HM; Aziz MS; Makhlouf MM
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Oct; 61(13-14):3026-31. PubMed ID: 16165047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain effect on electronic structures of graphene nanoribbons: A first-principles study.
    Sun L; Li Q; Ren H; Su H; Shi QW; Yang J
    J Chem Phys; 2008 Aug; 129(7):074704. PubMed ID: 19044789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study.
    Zhang YH; Chen YB; Zhou KG; Liu CH; Zeng J; Zhang HL; Peng Y
    Nanotechnology; 2009 May; 20(18):185504. PubMed ID: 19420616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Half-metallicity in hybrid BCN nanoribbons.
    Kan EJ; Wu X; Li Z; Zeng XC; Yang J; Hou JG
    J Chem Phys; 2008 Aug; 129(8):084712. PubMed ID: 19044846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and optical properties of passivated silicon nanoclusters with different shapes: a theoretical investigation.
    Wang BC; Chou YM; Deng JP; Dung YT
    J Phys Chem A; 2008 Jul; 112(28):6351-7. PubMed ID: 18570356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic and magnetic properties of armchair and zigzag graphene nanoribbons.
    Owens FJ
    J Chem Phys; 2008 May; 128(19):194701. PubMed ID: 18500880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical poling effect and optical absorption of cyan, ethylcarboxyl and tert-buthyl derivatives of 1H-pyrazolo[3,4-b]quinoline: experiment and quantum-chemical simulations.
    Koścień E; Sanetra J; Gondek E; Jarosz B; Kityk IV; Ebothe J; Kityk AV
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jun; 61(8):1933-8. PubMed ID: 15863069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural, electronic, and optical properties of representative Cu-flavonoid complexes.
    Lekka ChE; Ren J; Meng S; Kaxiras E
    J Phys Chem B; 2009 May; 113(18):6478-83. PubMed ID: 19358539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of defect types on the electronic and optical properties of graphene nanoflakes physisorbed by ionic liquids.
    Shakourian-Fard M; Kamath G
    Phys Chem Chem Phys; 2017 Feb; 19(6):4383-4395. PubMed ID: 28119976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical Excitations and Field Enhancement in Short Graphene Nanoribbons.
    Cocchi C; Prezzi D; Ruini A; Benassi E; Caldas MJ; Corni S; Molinari E
    J Phys Chem Lett; 2012 Apr; 3(7):924-9. PubMed ID: 26286422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saddles, twists, and curls: shape transitions in freestanding nanoribbons.
    Wang H; Upmanyu M
    Nanoscale; 2012 Jun; 4(12):3620-4. PubMed ID: 22499039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural, electronic, and vibrational properties of C(60-n)Nn (n = 1-12).
    Sharma H; Garg I; Dharamvir K; Jindal VK
    J Phys Chem A; 2009 Aug; 113(31):9002-13. PubMed ID: 19719305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin polarized conductance in hybrid graphene nanoribbons using 5-7 defects.
    Botello-Méndez AR; Cruz-Silva E; López-Urías F; Sumpter BG; Meunier V; Terrones M; Terrones H
    ACS Nano; 2009 Nov; 3(11):3606-12. PubMed ID: 19863086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical investigation of the tunable behavior of p-n copolymers based on oligothiophenes and 1,4-bis(oxadiazolyl)-benzene.
    Chen RF; Pan JF; Pan JH; Zhang Y; Fan QL; Huang W
    J Phys Chem B; 2006 Nov; 110(47):23750-5. PubMed ID: 17125336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the curvature of deformed graphene nanoribbons on their electronic and adsorptive properties: theoretical investigation based on the analysis of the local stress field for an atomic grid.
    Glukhova O; Slepchenkov M
    Nanoscale; 2012 Jun; 4(11):3335-44. PubMed ID: 22543701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.