These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 19239224)

  • 1. Large-area patterning of carbon nanotube ring arrays.
    Motavas S; Omrane B; Papadopoulos C
    Langmuir; 2009 Apr; 25(8):4655-8. PubMed ID: 19239224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generating suspended single-walled carbon nanotubes across a large surface area via patterning self-assembled catalyst-containing block copolymer thin films.
    Lu J; Kopley T; Dutton D; Liu J; Qian C; Son H; Dresselhaus M; Kong J
    J Phys Chem B; 2006 Jun; 110(22):10585-9. PubMed ID: 16771301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembled ferrofluid lithography: patterning micro and nanostructures by controlling magnetic nanoparticles.
    Chang CH; Tan CW; Miao J; Barbastathis G
    Nanotechnology; 2009 Dec; 20(49):495301. PubMed ID: 19893158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short, highly ordered, single-walled mixed-oxide nanotubes assemble from amorphous nanoparticles.
    Mukherjee S; Kim K; Nair S
    J Am Chem Soc; 2007 May; 129(21):6820-6. PubMed ID: 17480076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using colloid lithography to fabricate silicon nanopillar arrays on silicon substrates.
    Chen JK; Qui JQ; Fan SK; Kuo SW; Ko FH; Chu CW; Chang FC
    J Colloid Interface Sci; 2012 Feb; 367(1):40-8. PubMed ID: 22104277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and applications of electrochemically self-assembled titania nanotube arrays.
    Rani S; Roy SC; Paulose M; Varghese OK; Mor GK; Kim S; Yoriya S; Latempa TJ; Grimes CA
    Phys Chem Chem Phys; 2010 Mar; 12(12):2780-800. PubMed ID: 20449368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regular arrays of 2 nm metal nanoparticles for deterministic synthesis of nanomaterials.
    Javey A; Dai H
    J Am Chem Soc; 2005 Aug; 127(34):11942-3. PubMed ID: 16117524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The fabrication of high aspect ratio carbon nanotube arrays by direct laser interference patterning.
    Lasagni A; Cross R; Graham S; Das S
    Nanotechnology; 2009 Jun; 20(24):245305. PubMed ID: 19468170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Template-assisted patterning of nanoscale self-assembled monolayer arrays on surfaces.
    Gao H; Gosvami NN; Deng J; Tan LS; Sander MS
    Langmuir; 2006 Sep; 22(19):8078-82. PubMed ID: 16952244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling nanotube dimensions: correlation between composition, diameter, and internal energy of single-walled mixed oxide nanotubes.
    Konduri S; Mukherjee S; Nair S
    ACS Nano; 2007 Dec; 1(5):393-402. PubMed ID: 19206659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of metal nanoparticle arrays by controlled decomposition of polymer particles.
    Brodoceanu D; Fang C; Voelcker NH; Bauer CT; Wonn A; Kroner E; Arzt E; Kraus T
    Nanotechnology; 2013 Mar; 24(8):085304. PubMed ID: 23385827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte.
    Ruan C; Paulose M; Varghese OK; Mor GK; Grimes CA
    J Phys Chem B; 2005 Aug; 109(33):15754-9. PubMed ID: 16852999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The selective fabrication of large-area highly ordered TiO2 nanorod and nanotube arrays on conductive transparent substrates via sol-gel electrophoresis.
    Ren X; Gershon T; Iza DC; Muñoz-Rojas D; Musselman K; Macmanus-Driscoll JL
    Nanotechnology; 2009 Sep; 20(36):365604. PubMed ID: 19687541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transferable ordered ni hollow sphere arrays induced by electrodeposition on colloidal monolayer.
    Duan G; Cai W; Li Y; Li Z; Cao B; Luo Y
    J Phys Chem B; 2006 Apr; 110(14):7184-8. PubMed ID: 16599484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-yield growth of vertically aligned carbon nanotubes on a continuously moving substrate.
    Guzmán de Villoria R; Figueredo SL; Hart AJ; Steiner SA; Slocum AH; Wardle BL
    Nanotechnology; 2009 Oct; 20(40):405611. PubMed ID: 19752503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of nanopore arrays and ultrathin silicon nitride membranes by block-copolymer-assisted lithography.
    Popa AM; Niedermann P; Heinzelmann H; Hubbell JA; Pugin R
    Nanotechnology; 2009 Dec; 20(48):485303. PubMed ID: 19880976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An approach to fabrication of metal nanoring arrays.
    Bayati M; Patoka P; Giersig M; Savinova ER
    Langmuir; 2010 Mar; 26(5):3549-54. PubMed ID: 20104920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-ordering of colloidal particles in shallow nanoscale surface corrugations.
    Mathur A; Brown AD; Erlebacher J
    Langmuir; 2006 Jan; 22(2):582-9. PubMed ID: 16401105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directed assembly of single-walled carbon nanotubes via drop-casting onto a UV-patterned photosensitive monolayer.
    Bardecker JA; Afzali A; Tulevski GS; Graham T; Hannon JB; Jen AK
    J Am Chem Soc; 2008 Jun; 130(23):7226-7. PubMed ID: 18481849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of ordered ice nanotubes inside carbon nanotubes.
    Koga K; Gao GT; Tanaka H; Zeng XC
    Nature; 2001 Aug; 412(6849):802-5. PubMed ID: 11518961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.