These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 19239618)
1. Modelling the ecology of the coastal mosquitoes Aedes vigilax and Aedes camptorhynchus at Port Pirie, South Australia. Kokkinn MJ; Duval DJ; Williams CR Med Vet Entomol; 2009 Mar; 23(1):85-91. PubMed ID: 19239618 [TBL] [Abstract][Full Text] [Related]
2. Determining meteorological drivers of salt marsh mosquito peaks in tropical northern Australia. Jacups SP; Carter J; Kurucz N; McDonnell J; Whelan PI J Vector Ecol; 2015 Dec; 40(2):277-81. PubMed ID: 26611962 [TBL] [Abstract][Full Text] [Related]
3. Towards management of mosquitoes at Homebush Bay, Sydney, Australia. I. Seasonal activity and relative abundance of adults of Aedes vigilax, Culex sitiens, and other salt-marsh species, 1993-94 through 1997-98. Webb CE; Russell RC J Am Mosq Control Assoc; 1999 Jun; 15(2):242-9. PubMed ID: 10412120 [TBL] [Abstract][Full Text] [Related]
4. Development of a regional climate change model for Staples K; Neville PJ; Richardson S; Oosthuizen J Bull Entomol Res; 2024 Feb; 114(1):8-21. PubMed ID: 38235528 [TBL] [Abstract][Full Text] [Related]
5. Mosquito communities with trap height and urban-rural gradient in Adelaide, South Australia: implications for disease vector surveillance. Johnston E; Weinstein P; Slaney D; Flies AS; Fricker S; Williams C J Vector Ecol; 2014 Jun; 39(1):48-55. PubMed ID: 24820555 [TBL] [Abstract][Full Text] [Related]
6. Quantitative PCR assay for the detection of Aedes vigilax in mosquito trap collections containing large numbers of morphologically similar species and phylogenetic analysis of specimens collected in Victoria, Australia. Mee PT; Wong S; Brown K; Lynch SE Parasit Vectors; 2021 Aug; 14(1):434. PubMed ID: 34454606 [TBL] [Abstract][Full Text] [Related]
7. Difference in mosquito species (Diptera: Culicidae) and the transmission of Ross River virus between coastline and inland areas in Brisbane, Australia. Hu W; Mengersen K; Dale P; Tong S Environ Entomol; 2010 Feb; 39(1):88-97. PubMed ID: 20146843 [TBL] [Abstract][Full Text] [Related]
8. Predictive indicators for Ross River virus infection in the Darwin area of tropical northern Australia, using long-term mosquito trapping data. Jacups SP; Whelan PI; Markey PG; Cleland SJ; Williamson GJ; Currie BJ Trop Med Int Health; 2008 Jul; 13(7):943-52. PubMed ID: 18482196 [TBL] [Abstract][Full Text] [Related]
9. Endogenous and exogenous factors controlling temporal abundance patterns of tropical mosquitoes. Yang GJ; Brook BW; Whelan PI; Cleland S; Bradshaw CJ Ecol Appl; 2008 Dec; 18(8):2028-40. PubMed ID: 19263895 [TBL] [Abstract][Full Text] [Related]
10. A comparison of Aedes vigilax larval population densities and associated vegetation categories in a coastal wetland, Northern Territory, Australia. Jacups SP; Kurucz N; Whelan PI; Carter JM J Vector Ecol; 2009 Dec; 34(2):311-6. PubMed ID: 20836834 [TBL] [Abstract][Full Text] [Related]
11. The relationship between the density of Aedes vigilax (Diptera: Culicidae) eggshells and environmental factors on Kooragang Island, New South Wales, Australia. Turner PA; Streever WJ J Am Mosq Control Assoc; 1997 Dec; 13(4):361-7. PubMed ID: 9474563 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of liquid Bacillus thuringiensis var. israelensis products for control of Australian Aedes arbovirus vectors. Brown MD; Carter J; Watson TM; Thomas P; Santaguliana G; Purdie DM; Kay BH J Am Mosq Control Assoc; 2001 Mar; 17(1):8-12. PubMed ID: 11345425 [TBL] [Abstract][Full Text] [Related]
13. Using a climate-dependent model to predict mosquito abundance: application to Aedes (Stegomyia) africanus and Aedes (Diceromyia) furcifer (Diptera: Culicidae). Schaeffer B; Mondet B; Touzeau S Infect Genet Evol; 2008 Jul; 8(4):422-32. PubMed ID: 17698422 [TBL] [Abstract][Full Text] [Related]
14. [Seasonal variation of Aedes aegypti and Aedes albopictus in a city of Southeastern Brazil]. Serpa LL; Costa KV; Voltolini JC; Kakitani I Rev Saude Publica; 2006 Dec; 40(6):1101-5. PubMed ID: 17173169 [TBL] [Abstract][Full Text] [Related]
15. Runnelling to control saltmarsh mosquitoes: long-term efficacy and environmental impacts. Dale PE; Dale PT; Hulsman K; Kay BH J Am Mosq Control Assoc; 1993 Jun; 9(2):174-81. PubMed ID: 8350074 [TBL] [Abstract][Full Text] [Related]
16. Dryland salinity and the ecology of Ross River virus: the ecological underpinnings of the potential for transmission. Carver S; Spafford H; Storey A; Weinstein P Vector Borne Zoonotic Dis; 2009 Dec; 9(6):611-22. PubMed ID: 19326966 [TBL] [Abstract][Full Text] [Related]
18. A geospatial evaluation of Aedes vigilax larval control efforts across a coastal wetland, Northern Territory, Australia. Kurucz N; Whelan PI; Carter JM; Jacups SP J Vector Ecol; 2009 Dec; 34(2):317-23. PubMed ID: 20836835 [TBL] [Abstract][Full Text] [Related]
19. The effect of shade on the container index and pupal productivity of the mosquitoes Aedes aegypti and Culex pipiens breeding in artificial containers. Vezzani D; Albicócco AP Med Vet Entomol; 2009 Mar; 23(1):78-84. PubMed ID: 19239617 [TBL] [Abstract][Full Text] [Related]
20. Experimental comparison of aerial larvicides and habitat modification for controlling disease-carrying Aedes vigilax mosquitoes. de Little SC; Williamson GJ; Bowman DM; Whelan PI; Brook BW; Bradshaw CJ Pest Manag Sci; 2012 May; 68(5):709-17. PubMed ID: 22076747 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]