These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 19239621)
1. Genome-wide gene expression profiling and a forward genetic screen show that differential expression of the sodium ion transporter Ena21 contributes to the differential tolerance of Candida albicans and Candida dubliniensis to osmotic stress. Enjalbert B; Moran GP; Vaughan C; Yeomans T; Maccallum DM; Quinn J; Coleman DC; Brown AJ; Sullivan DJ Mol Microbiol; 2009 Apr; 72(1):216-28. PubMed ID: 19239621 [TBL] [Abstract][Full Text] [Related]
2. Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans. Jackson AP; Gamble JA; Yeomans T; Moran GP; Saunders D; Harris D; Aslett M; Barrell JF; Butler G; Citiulo F; Coleman DC; de Groot PW; Goodwin TJ; Quail MA; McQuillan J; Munro CA; Pain A; Poulter RT; Rajandream MA; Renauld H; Spiering MJ; Tivey A; Gow NA; Barrell B; Sullivan DJ; Berriman M Genome Res; 2009 Dec; 19(12):2231-44. PubMed ID: 19745113 [TBL] [Abstract][Full Text] [Related]
3. Comparative genomics using Candida albicans DNA microarrays reveals absence and divergence of virulence-associated genes in Candida dubliniensis. Moran G; Stokes C; Thewes S; Hube B; Coleman DC; Sullivan D Microbiology (Reading); 2004 Oct; 150(Pt 10):3363-82. PubMed ID: 15470115 [TBL] [Abstract][Full Text] [Related]
4. Comparative transcript profiling of Candida albicans and Candida dubliniensis identifies SFL2, a C. albicans gene required for virulence in a reconstituted epithelial infection model. Spiering MJ; Moran GP; Chauvel M; Maccallum DM; Higgins J; Hokamp K; Yeomans T; d'Enfert C; Coleman DC; Sullivan DJ Eukaryot Cell; 2010 Feb; 9(2):251-65. PubMed ID: 20023067 [TBL] [Abstract][Full Text] [Related]
5. Differential filamentation of Candida albicans and Candida dubliniensis Is governed by nutrient regulation of UME6 expression. O'Connor L; Caplice N; Coleman DC; Sullivan DJ; Moran GP Eukaryot Cell; 2010 Sep; 9(9):1383-97. PubMed ID: 20639413 [TBL] [Abstract][Full Text] [Related]
6. Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis. Moran GP; MacCallum DM; Spiering MJ; Coleman DC; Sullivan DJ Mol Microbiol; 2007 Nov; 66(4):915-29. PubMed ID: 17927699 [TBL] [Abstract][Full Text] [Related]
7. Differential expression of the NRG1 repressor controls species-specific regulation of chlamydospore development in Candida albicans and Candida dubliniensis. Staib P; Morschhäuser J Mol Microbiol; 2005 Jan; 55(2):637-52. PubMed ID: 15659176 [TBL] [Abstract][Full Text] [Related]
8. Telomeric ORFs (TLOs) in Candida spp. Encode mediator subunits that regulate distinct virulence traits. Haran J; Boyle H; Hokamp K; Yeomans T; Liu Z; Church M; Fleming AB; Anderson MZ; Berman J; Myers LC; Sullivan DJ; Moran GP PLoS Genet; 2014 Oct; 10(10):e1004658. PubMed ID: 25356803 [TBL] [Abstract][Full Text] [Related]
9. Expansion of the TLO gene family enhances the virulence of Candida species. Flanagan PR; Fletcher J; Boyle H; Sulea R; Moran GP; Sullivan DJ PLoS One; 2018; 13(7):e0200852. PubMed ID: 30028853 [TBL] [Abstract][Full Text] [Related]
10. Species and condition specific adaptation of the transcriptional landscapes in Candida albicans and Candida dubliniensis. Grumaz C; Lorenz S; Stevens P; Lindemann E; Schöck U; Retey J; Rupp S; Sohn K BMC Genomics; 2013 Apr; 14():212. PubMed ID: 23547856 [TBL] [Abstract][Full Text] [Related]
11. Differential virulence of Candida albicans and C. dubliniensis: A role for Tor1 kinase? Sullivan DJ; Moran GP Virulence; 2011; 2(1):77-81. PubMed ID: 21289475 [TBL] [Abstract][Full Text] [Related]
12. Global transcriptome sequencing identifies chlamydospore specific markers in Candida albicans and Candida dubliniensis. Palige K; Linde J; Martin R; Böttcher B; Citiulo F; Sullivan DJ; Weber J; Staib C; Rupp S; Hube B; Morschhäuser J; Staib P PLoS One; 2013; 8(4):e61940. PubMed ID: 23613980 [TBL] [Abstract][Full Text] [Related]
13. Phenotypic screening, transcriptional profiling, and comparative genomic analysis of an invasive and non-invasive strain of Candida albicans. Thewes S; Moran GP; Magee BB; Schaller M; Sullivan DJ; Hube B BMC Microbiol; 2008 Oct; 8():187. PubMed ID: 18950481 [TBL] [Abstract][Full Text] [Related]
14. A molecular genetic system for the pathogenic yeast Candida dubliniensis. Staib P; Michel S; Köhler G; Morschhäuser J Gene; 2000 Jan; 242(1-2):393-8. PubMed ID: 10721733 [TBL] [Abstract][Full Text] [Related]
15. Rapid evolution of Cse4p-rich centromeric DNA sequences in closely related pathogenic yeasts, Candida albicans and Candida dubliniensis. Padmanabhan S; Thakur J; Siddharthan R; Sanyal K Proc Natl Acad Sci U S A; 2008 Dec; 105(50):19797-802. PubMed ID: 19060206 [TBL] [Abstract][Full Text] [Related]
16. Candida dubliniensis: ten years on. Sullivan DJ; Moran GP; Coleman DC FEMS Microbiol Lett; 2005 Dec; 253(1):9-17. PubMed ID: 16213674 [TBL] [Abstract][Full Text] [Related]
18. A family of secreted pathogenesis-related proteins in Candida albicans. Röhm M; Lindemann E; Hiller E; Ermert D; Lemuth K; Trkulja D; Sogukpinar O; Brunner H; Rupp S; Urban CF; Sohn K Mol Microbiol; 2013 Jan; 87(1):132-51. PubMed ID: 23136884 [TBL] [Abstract][Full Text] [Related]
19. Differential interaction of the two related fungal species Candida albicans and Candida dubliniensis with human neutrophils. Svobodová E; Staib P; Losse J; Hennicke F; Barz D; Józsi M J Immunol; 2012 Sep; 189(5):2502-11. PubMed ID: 22851712 [TBL] [Abstract][Full Text] [Related]
20. Rapid and unequivocal differentiation of Candida dubliniensis from other Candida species using species-specific DNA probes: comparison with phenotypic identification methods. Ellepola AN; Hurst SF; Elie CM; Morrison CJ Oral Microbiol Immunol; 2003 Dec; 18(6):379-88. PubMed ID: 14622344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]