These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1305 related articles for article (PubMed ID: 19239888)

  • 61. Revisiting Criteria for Plant MicroRNA Annotation in the Era of Big Data.
    Axtell MJ; Meyers BC
    Plant Cell; 2018 Feb; 30(2):272-284. PubMed ID: 29343505
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Identification and temporal expression analysis of conserved and novel microRNAs in Sorghum.
    Zhang L; Zheng Y; Jagadeeswaran G; Li Y; Gowdu K; Sunkar R
    Genomics; 2011 Dec; 98(6):460-8. PubMed ID: 21907786
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Molecular biology. Small RNA makes its move.
    Martienssen R
    Science; 2010 May; 328(5980):834-5. PubMed ID: 20466910
    [No Abstract]   [Full Text] [Related]  

  • 64. The regulatory activities of plant microRNAs: a more dynamic perspective.
    Meng Y; Shao C; Wang H; Chen M
    Plant Physiol; 2011 Dec; 157(4):1583-95. PubMed ID: 22003084
    [No Abstract]   [Full Text] [Related]  

  • 65. Derivation and function of small interfering RNAs and microRNAs.
    Cullen BR
    Virus Res; 2004 Jun; 102(1):3-9. PubMed ID: 15068874
    [TBL] [Abstract][Full Text] [Related]  

  • 66. An array platform for identification of stress-responsive microRNAs in plants.
    Jia X; Mendu V; Tang G
    Methods Mol Biol; 2010; 639():253-69. PubMed ID: 20387051
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Orthologous plant microRNAs: microregulators with great potential for improving stress tolerance in plants.
    Rajwanshi R; Chakraborty S; Jayanandi K; Deb B; Lightfoot DA
    Theor Appl Genet; 2014 Dec; 127(12):2525-43. PubMed ID: 25256907
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Plant small RNAs: advancement in the understanding of biogenesis and role in plant development.
    Singh A; Gautam V; Singh S; Sarkar Das S; Verma S; Mishra V; Mukherjee S; Sarkar AK
    Planta; 2018 Sep; 248(3):545-558. PubMed ID: 29968061
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Northern Blot Analysis of microRNAs and Other Small RNAs in Plants.
    De la Rosa C; Reyes JL
    Methods Mol Biol; 2019; 1932():121-129. PubMed ID: 30701496
    [TBL] [Abstract][Full Text] [Related]  

  • 70. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs.
    Shahid S; Kim G; Johnson NR; Wafula E; Wang F; Coruh C; Bernal-Galeano V; Phifer T; dePamphilis CW; Westwood JH; Axtell MJ
    Nature; 2018 Jan; 553(7686):82-85. PubMed ID: 29300014
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Phase separation of chromatin and small RNA pathways in plants.
    Lei Z; Wang L; Kim EY; Cho J
    Plant J; 2021 Dec; 108(5):1256-1265. PubMed ID: 34585805
    [TBL] [Abstract][Full Text] [Related]  

  • 72. miRNAs in the biogenesis of trans-acting siRNAs in higher plants.
    Allen E; Howell MD
    Semin Cell Dev Biol; 2010 Oct; 21(8):798-804. PubMed ID: 20359543
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Regulation and functional specialization of small RNA-target nodes during plant development.
    Rubio-Somoza I; Cuperus JT; Weigel D; Carrington JC
    Curr Opin Plant Biol; 2009 Oct; 12(5):622-7. PubMed ID: 19699140
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Evolutionary Footprints Reveal Insights into Plant MicroRNA Biogenesis.
    Chorostecki U; Moro B; Rojas AML; Debernardi JM; Schapire AL; Notredame C; Palatnik JF
    Plant Cell; 2017 Jun; 29(6):1248-1261. PubMed ID: 28550151
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Plant Extracellular Vesicles Contain Diverse Small RNA Species and Are Enriched in 10- to 17-Nucleotide "Tiny" RNAs.
    Baldrich P; Rutter BD; Karimi HZ; Podicheti R; Meyers BC; Innes RW
    Plant Cell; 2019 Feb; 31(2):315-324. PubMed ID: 30705133
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Transcription Is Just the Beginning of Gene Expression Regulation: The Functional Significance of RNA-Binding Proteins to Post-transcriptional Processes in Plants.
    Prall W; Sharma B; Gregory BD
    Plant Cell Physiol; 2019 Sep; 60(9):1939-1952. PubMed ID: 31155676
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Isolation and Detection Methods of Plant miRNAs.
    Vera-Hernández PF; de Folter S; Rosas-Cárdenas FF
    Methods Mol Biol; 2019; 1932():109-120. PubMed ID: 30701495
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Computational prediction of plant miRNA targets.
    Sun YH; Lu S; Shi R; Chiang VL
    Methods Mol Biol; 2011; 744():175-86. PubMed ID: 21533693
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The diversity of post-transcriptional gene silencing mediated by small silencing RNAs in plants.
    Tan H; Li B; Guo H
    Essays Biochem; 2020 Dec; 64(6):919-930. PubMed ID: 32885814
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The RNA degradome: a precious resource for deciphering RNA processing and regulation codes in plants.
    Ma X; Yin X; Tang Z; Ito H; Shao C; Meng Y; Xie T
    RNA Biol; 2020 Sep; 17(9):1223-1227. PubMed ID: 32338184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 66.