BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 19240928)

  • 1. The effect of Al on the hydrogen sorption mechanism of LiBH(4).
    Friedrichs O; Kim JW; Remhof A; Buchter F; Borgschulte A; Wallacher D; Cho YW; Fichtner M; Oh KH; Züttel A
    Phys Chem Chem Phys; 2009 Mar; 11(10):1515-20. PubMed ID: 19240928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functions of LiBH4 in the hydrogen sorption reactions of the 2LiH-Mg(NH2)2 system.
    Hu J; Weidner E; Hoelzel M; Fichtner M
    Dalton Trans; 2010 Oct; 39(38):9100-7. PubMed ID: 20733996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-temperature synthesis of LiBH4 by gas-solid reaction.
    Friedrichs O; Borgschulte A; Kato S; Buchter F; Gremaud R; Remhof A; Züttel A
    Chemistry; 2009; 15(22):5531-4. PubMed ID: 19373797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen storage in LiAlH4: predictions of the crystal structures and reaction mechanisms of intermediate phases from quantum mechanics.
    Kang JK; Lee JY; Muller RP; Goddard WA
    J Chem Phys; 2004 Dec; 121(21):10623-33. PubMed ID: 15549945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced catalytic dehydrogenation of LiBH(4) by carbon-supported Pd nanoparticles.
    Xu J; Yu X; Ni J; Zou Z; Li Z; Yang H
    Dalton Trans; 2009 Oct; (39):8386-91. PubMed ID: 19789792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the surface oxidation of LiBH(4) on the hydrogen desorption mechanism.
    Kato S; Bielmann M; Borgschulte A; Zakaznova-Herzog V; Remhof A; Orimo S; Züttel A
    Phys Chem Chem Phys; 2010 Sep; 12(36):10950-5. PubMed ID: 20657909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressure and temperature dependence of the decomposition pathway of LiBH4.
    Yan Y; Remhof A; Hwang SJ; Li HW; Mauron P; Orimo S; Züttel A
    Phys Chem Chem Phys; 2012 May; 14(18):6514-9. PubMed ID: 22456532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen reversibility of LiBH₄-MgH₂-Al composites.
    Hansen BR; Ravnsbæk DB; Skibsted J; Jensen TR
    Phys Chem Chem Phys; 2014 May; 16(19):8970-80. PubMed ID: 24695645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergetic effects of in situ formed CaH2 and LiBH4 on hydrogen storage properties of the Li-Mg-N-H system.
    Li B; Liu Y; Gu J; Gao M; Pan H
    Chem Asian J; 2013 Feb; 8(2):374-84. PubMed ID: 23169699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functions of MgH2 in hydrogen storage reactions of the 6LiBH4-CaH2 reactive hydride composite.
    Zhou Y; Liu Y; Zhang Y; Gao M; Pan H
    Dalton Trans; 2012 Aug; 41(36):10980-7. PubMed ID: 22842399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved hydrogen storage kinetics of the Li-Mg-N-H system by addition of Mg(BH4)2.
    Pan H; Shi S; Liu Y; Li B; Yang Y; Gao M
    Dalton Trans; 2013 Mar; 42(11):3802-11. PubMed ID: 23178338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability and reversibility of LiBH4.
    Mauron P; Buchter F; Friedrichs O; Remhof A; Bielmann M; Zwicky CN; Züttel A
    J Phys Chem B; 2008 Jan; 112(3):906-10. PubMed ID: 18088111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Al-based additives on the hydrogen storage performance of the Mg(NH2)2-2LiH system.
    Cao H; Zhang Y; Wang J; Xiong Z; Wu G; Qiu J; Chen P
    Dalton Trans; 2013 Apr; 42(15):5524-31. PubMed ID: 23436134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of H2 partial pressure on the reaction progression and reversibility of lithium-containing multicomponent destabilized hydrogen storage systems.
    Price TE; Grant DM; Weston D; Hansen T; Arnbjerg LM; Ravnsbæk DB; Jensen TR; Walker GS
    J Am Chem Soc; 2011 Aug; 133(34):13534-8. PubMed ID: 21755995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regeneration of lithium aluminum hydride.
    Graetz J; Wegrzyn J; Reilly JJ
    J Am Chem Soc; 2008 Dec; 130(52):17790-4. PubMed ID: 19053465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The reaction process of hydrogen absorption and desorption on the nanocomposite of hydrogenated graphite and lithium hydride.
    Miyaoka H; Ichikawa T; Kojima Y
    Nanotechnology; 2009 May; 20(20):204021. PubMed ID: 19420669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of dehydrogenation kinetics of LiBH(4) dispersed on modified multi-walled carbon nanotubes.
    Agresti F; Khandelwal A; Capurso G; Russo SL; Maddalena A; Principi G
    Nanotechnology; 2010 Feb; 21(6):065707. PubMed ID: 20057019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detailed spectroscopic, thermodynamic, and kinetic studies on the protolytic equilibria of Fe(III)cydta and the activation of hydrogen peroxide.
    Brausam A; Maigut J; Meier R; Szilágyi PA; Buschmann HJ; Massa W; Homonnay Z; van Eldik R
    Inorg Chem; 2009 Aug; 48(16):7864-84. PubMed ID: 19618946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Al3Li4(BH4)13: a complex double-cation borohydride with a new structure.
    Lindemann I; Domènech Ferrer R; Dunsch L; Filinchuk Y; Cerný R; Hagemann H; D'Anna V; Lawson Daku LM; Schultz L; Gutfleisch O
    Chemistry; 2010 Aug; 16(29):8707-12. PubMed ID: 20583064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Planarization of B7- and B12- clusters by isoelectronic substitution: AlB6- and AlB11-.
    Romanescu C; Sergeeva AP; Li WL; Boldyrev AI; Wang LS
    J Am Chem Soc; 2011 Jun; 133(22):8646-53. PubMed ID: 21520972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.