These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 19240942)

  • 1. An efficient method-of-lines simulation procedure for organic semiconductor devices.
    Rogel-Salazar J; Bradley DD; Cash JR; Demello JC
    Phys Chem Chem Phys; 2009 Mar; 11(10):1636-46. PubMed ID: 19240942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic numerical solver selection from a repository of pre-run simulations.
    Claeys P; Vanrolleghem PA; De Baets B
    Water Sci Technol; 2009; 59(5):893-906. PubMed ID: 19273888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A gradual update method for simulating the steady-state solution of stiff differential equations in metabolic circuits.
    Shiraishi E; Maeda K; Kurata H
    Bioprocess Biosyst Eng; 2009 Feb; 32(2):283-8. PubMed ID: 18633649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy and Efficiency in Fixed-Point Neural ODE Solvers.
    Hopkins M; Furber S
    Neural Comput; 2015 Oct; 27(10):2148-82. PubMed ID: 26313605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior.
    Strukov DB; Borghetti JL; Williams RS
    Small; 2009 May; 5(9):1058-63. PubMed ID: 19226597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring Inductive Linearization for simulation and estimation with an application to the Michaelis-Menten model.
    Sharif S; Hasegawa C; Duffull SB
    J Pharmacokinet Pharmacodyn; 2022 Aug; 49(4):445-453. PubMed ID: 35788853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the performance of an implicit-explicit Runge-Kutta method in models of cardiac electrical activity.
    Spiteri RJ; Dean RC
    IEEE Trans Biomed Eng; 2008 May; 55(5):1488-95. PubMed ID: 18440894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-stepping techniques to enable the simulation of bursting behavior in a physiologically realistic computational islet.
    Khuvis S; Gobbert MK; Peercy BE
    Math Biosci; 2015 May; 263():1-17. PubMed ID: 25688913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solving delay differential equations in S-ADAPT by method of steps.
    Bauer RJ; Mo G; Krzyzanski W
    Comput Methods Programs Biomed; 2013 Sep; 111(3):715-34. PubMed ID: 23810514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A second-order algorithm for solving dynamic cell membrane equations.
    Sundnes J; Artebrant R; Skavhaug O; Tveito A
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2546-8. PubMed ID: 19237339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring inductive linearization for pharmacokinetic-pharmacodynamic systems of nonlinear ordinary differential equations.
    Hasegawa C; Duffull SB
    J Pharmacokinet Pharmacodyn; 2018 Feb; 45(1):35-47. PubMed ID: 28550375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulations of thermally induced photoacoustic wave propagation using a pseudospectral time-domain method.
    Sheu YL; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):1104-12. PubMed ID: 19473928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A solver based on pseudo-spectral analytical time-domain method for the two-fluid plasma model.
    Morel B; Giust R; Ardaneh K; Courvoisier F
    Sci Rep; 2021 Feb; 11(1):3151. PubMed ID: 33542257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exact and efficient calculation of Lagrange multipliers in biological polymers with constrained bond lengths and bond angles: proteins and nucleic acids as example cases.
    García-Risueño P; Echenique P; Alonso JL
    J Comput Chem; 2011 Nov; 32(14):3039-46. PubMed ID: 21823135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical solution of Dalgarno-Lewis equations by a mapped Fourier grid method.
    Cohen S; Themelis SI
    J Chem Phys; 2006 Apr; 124(13):134106. PubMed ID: 16613448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic integration of the reaction path using diagonally implicit Runge-Kutta methods.
    Burger SK; Yang W
    J Chem Phys; 2006 Dec; 125(24):244108. PubMed ID: 17199341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient solution of ordinary differential equations modeling electrical activity in cardiac cells.
    Sundnes J; Lines GT; Tveito A
    Math Biosci; 2001 Aug; 172(2):55-72. PubMed ID: 11520499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive step ODE algorithms for the 3D simulation of electric heart activity with graphics processing units.
    Garcia-Molla VM; Liberos A; Vidal A; Guillem MS; Millet J; Gonzalez A; Martinez-Zaldivar FJ; Climent AM
    Comput Biol Med; 2014 Jan; 44():15-26. PubMed ID: 24377685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Operator-splitting-based reactive transport models in strong feedback of porosity change: The contribution of analytical solutions for accuracy validation and estimator improvement.
    Lagneau V; van der Lee J
    J Contam Hydrol; 2010 Mar; 112(1-4):118-29. PubMed ID: 20042250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of biochemical simulations using integrators derived from "Adomian" decomposition with traditional numerical methods.
    Bulliman BT; Kuchel PW
    Biomed Biochim Acta; 1990; 49(8-9):661-70. PubMed ID: 2082915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.