BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 19241008)

  • 1. Advances in phosphopeptide enrichment techniques for phosphoproteomics.
    Beltran L; Cutillas PR
    Amino Acids; 2012 Sep; 43(3):1009-24. PubMed ID: 22821267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategies for mass spectrometry-based phosphoproteomics using isobaric tagging.
    Liu X; Fields R; Schweppe DK; Paulo JA
    Expert Rev Proteomics; 2021 Sep; 18(9):795-807. PubMed ID: 34652972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in quantitative high-throughput phosphoproteomics with sample multiplexing.
    Paulo JA; Schweppe DK
    Proteomics; 2021 May; 21(9):e2000140. PubMed ID: 33455035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corticotropin-releasing factor overexpression gives rise to sex differences in Alzheimer's disease-related signaling.
    Bangasser DA; Dong H; Carroll J; Plona Z; Ding H; Rodriguez L; McKennan C; Csernansky JG; Seeholzer SH; Valentino RJ
    Mol Psychiatry; 2017 Aug; 22(8):1126-1133. PubMed ID: 27752081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic discovery of host kinase signaling in bacterial infections.
    Richter E; Mostertz J; Hochgräfe F
    Proteomics Clin Appl; 2016 Oct; 10(9-10):994-1010. PubMed ID: 27440122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Functionally Important Phospho-Regulatory Events in Xenopus laevis Oocytes.
    Johnson JR; Santos SD; Johnson T; Pieper U; Strumillo M; Wagih O; Sali A; Krogan NJ; Beltrao P
    PLoS Comput Biol; 2015 Aug; 11(8):e1004362. PubMed ID: 26312481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative phosphoproteomic profiling of PINK1-deficient cells identifies phosphorylation changes in nuclear proteins.
    Qin X; Zheng C; Yates JR; Liao L
    Mol Biosyst; 2014 Jul; 10(7):1719-29. PubMed ID: 24626860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong cation exchange chromatography in analysis of posttranslational modifications: innovations and perspectives.
    Edelmann MJ
    J Biomed Biotechnol; 2011; 2011():936508. PubMed ID: 22174558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 15N-labeled brain enables quantification of proteome and phosphoproteome in cultured primary neurons.
    Liao L; Sando RC; Farnum JB; Vanderklish PW; Maximov A; Yates JR
    J Proteome Res; 2012 Feb; 11(2):1341-53. PubMed ID: 22070516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative in vivo analyses reveal calcium-dependent phosphorylation sites and identifies a novel component of the Toxoplasma invasion motor complex.
    Nebl T; Prieto JH; Kapp E; Smith BJ; Williams MJ; Yates JR; Cowman AF; Tonkin CJ
    PLoS Pathog; 2011 Sep; 7(9):e1002222. PubMed ID: 21980283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Challenges in plasma membrane phosphoproteomics.
    Orsburn BC; Stockwin LH; Newton DL
    Expert Rev Proteomics; 2011 Aug; 8(4):483-94. PubMed ID: 21819303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Divide and conquer: the application of organelle proteomics to heart failure.
    Agnetti G; Husberg C; Van Eyk JE
    Circ Res; 2011 Feb; 108(4):512-26. PubMed ID: 21335433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoproteomics for the masses.
    Grimsrud PA; Swaney DL; Wenger CD; Beauchene NA; Coon JJ
    ACS Chem Biol; 2010 Jan; 5(1):105-19. PubMed ID: 20047291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophilic interaction chromatography for fractionation and enrichment of the phosphoproteome.
    McNulty DE; Annan RS
    Methods Mol Biol; 2009; 527():93-105, x. PubMed ID: 19241008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combinatorial use of electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) and strong cation exchange (SCX) chromatography for in-depth phosphoproteome analysis.
    Zarei M; Sprenger A; Gretzmeier C; Dengjel J
    J Proteome Res; 2012 Aug; 11(8):4269-76. PubMed ID: 22768876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyapatite affinity chromatography for the highly selective enrichment of mono- and multi-phosphorylated peptides in phosphoproteome analysis.
    Mamone G; Picariello G; Ferranti P; Addeo F
    Proteomics; 2010 Feb; 10(3):380-93. PubMed ID: 19953538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of phosphorylated proteins.
    Turkina MV; Vener AV
    Methods Mol Biol; 2007; 355():305-16. PubMed ID: 17093319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enrichment and separation of mono- and multiply phosphorylated peptides using sequential elution from IMAC prior to mass spectrometric analysis.
    Thingholm TE; Jensen ON; Larsen MR
    Methods Mol Biol; 2009; 527():67-78, xi. PubMed ID: 19241006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enrichment and characterization of phosphopeptides by immobilized metal affinity chromatography (IMAC) and mass spectrometry.
    Thingholm TE; Jensen ON
    Methods Mol Biol; 2009; 527():47-56, xi. PubMed ID: 19241004
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.