BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 19241049)

  • 21. To What Extent is FAIMS Beneficial in the Analysis of Proteins?
    Cooper HJ
    J Am Soc Mass Spectrom; 2016 Apr; 27(4):566-77. PubMed ID: 26843211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrating ion mobility and imaging mass spectrometry for comprehensive analysis of biological tissues: A brief review and perspective.
    Rivera ES; Djambazova KV; Neumann EK; Caprioli RM; Spraggins JM
    J Mass Spectrom; 2020 Dec; 55(12):e4614. PubMed ID: 32955134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accurate Quantitative Proteomic Analyses Using Metabolic Labeling and High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS).
    Pfammatter S; Bonneil E; McManus FP; Thibault P
    J Proteome Res; 2019 May; 18(5):2129-2138. PubMed ID: 30919622
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement of mass spectrometry performance for proteomic analyses using high-field asymmetric waveform ion mobility spectrometry (FAIMS).
    Bonneil E; Pfammatter S; Thibault P
    J Mass Spectrom; 2015 Nov; 50(11):1181-95. PubMed ID: 26505763
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ion mobility-mass spectrometry.
    Kanu AB; Dwivedi P; Tam M; Matz L; Hill HH
    J Mass Spectrom; 2008 Jan; 43(1):1-22. PubMed ID: 18200615
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theoretical evaluation of peak capacity improvements by use of liquid chromatography combined with drift tube ion mobility-mass spectrometry.
    Causon TJ; Hann S
    J Chromatogr A; 2015 Oct; 1416():47-56. PubMed ID: 26372446
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fundamentals of traveling wave ion mobility spectrometry.
    Shvartsburg AA; Smith RD
    Anal Chem; 2008 Dec; 80(24):9689-99. PubMed ID: 18986171
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential Ion Mobility Separations in the Low-Pressure Regime.
    Shvartsburg AA; Haris A; Andrzejewski R; Entwistle A; Giles R
    Anal Chem; 2018 Jan; 90(1):936-943. PubMed ID: 29179535
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-Field Differential Ion Mobility Spectrometry of Dipole-Aligned Macromolecules.
    Pathak P; Shvartsburg AA
    Anal Chem; 2020 Oct; 92(20):13855-13863. PubMed ID: 32886883
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrasensitive identification of localization variants of modified peptides using ion mobility spectrometry.
    Ibrahim YM; Shvartsburg AA; Smith RD; Belov ME
    Anal Chem; 2011 Jul; 83(14):5617-23. PubMed ID: 21692493
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expanding Differential Ion Mobility Separations into the MegaDalton Range.
    Wörner TP; Thurman HA; Makarov AA; Shvartsburg AA
    Anal Chem; 2024 Apr; 96(14):5392-5398. PubMed ID: 38526848
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ion Mobility Separation of Peptide Isotopomers.
    Kaszycki JL; Bowman AP; Shvartsburg AA
    J Am Soc Mass Spectrom; 2016 May; 27(5):795-9. PubMed ID: 26944281
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ion Mobility Spectrometry of Superheated Macromolecules at Electric Fields up to 500 Td.
    Andrzejewski R; Entwistle A; Giles R; Shvartsburg AA
    Anal Chem; 2021 Sep; 93(35):12049-12058. PubMed ID: 34423987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing the dynamic range and peak capacity of nanoflow LC-FAIMS-MS on an ion trap mass spectrometer for proteomics.
    Canterbury JD; Yi X; Hoopmann MR; MacCoss MJ
    Anal Chem; 2008 Sep; 80(18):6888-97. PubMed ID: 18693747
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ion mobility spectrometry-mass spectrometry performance using electrodynamic ion funnels and elevated drift gas pressures.
    Baker ES; Clowers BH; Li F; Tang K; Tolmachev AV; Prior DC; Belov ME; Smith RD
    J Am Soc Mass Spectrom; 2007 Jul; 18(7):1176-87. PubMed ID: 17512752
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Novel Differential Ion Mobility Device Expands the Depth of Proteome Coverage and the Sensitivity of Multiplex Proteomic Measurements.
    Pfammatter S; Bonneil E; McManus FP; Prasad S; Bailey DJ; Belford M; Dunyach JJ; Thibault P
    Mol Cell Proteomics; 2018 Oct; 17(10):2051-2067. PubMed ID: 30007914
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comprehensive Single-Shot Proteomics with FAIMS on a Hybrid Orbitrap Mass Spectrometer.
    Hebert AS; Prasad S; Belford MW; Bailey DJ; McAlister GC; Abbatiello SE; Huguet R; Wouters ER; Dunyach JJ; Brademan DR; Westphall MS; Coon JJ
    Anal Chem; 2018 Aug; 90(15):9529-9537. PubMed ID: 29969236
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Review on ion mobility spectrometry. Part 2: hyphenated methods and effects of experimental parameters.
    Cumeras R; Figueras E; Davis CE; Baumbach JI; Gràcia I
    Analyst; 2015 Mar; 140(5):1391-410. PubMed ID: 25465248
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Elimination of the helium requirement in high-field asymmetric waveform ion mobility spectrometry (FAIMS): beneficial effects of decreasing the analyzer gap width on peptide analysis.
    Barnett DA; Ouellette RJ
    Rapid Commun Mass Spectrom; 2011 Jul; 25(14):1959-71. PubMed ID: 21698679
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced sensitivity in proteomics experiments using FAIMS coupled with a hybrid linear ion trap/Orbitrap mass spectrometer.
    Saba J; Bonneil E; Pomiès C; Eng K; Thibault P
    J Proteome Res; 2009 Jul; 8(7):3355-66. PubMed ID: 19469569
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.