These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 19241062)

  • 1. Modeling "psychosis" in vitro by inducing disordered neuronal network activity in cortical brain slices.
    Aghajanian GK
    Psychopharmacology (Berl); 2009 Nov; 206(4):575-85. PubMed ID: 19241062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prefrontal cortical network activity: Opposite effects of psychedelic hallucinogens and D1/D5 dopamine receptor activation.
    Lambe EK; Aghajanian GK
    Neuroscience; 2007 Mar; 145(3):900-10. PubMed ID: 17293055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A selective positive allosteric modulator of metabotropic glutamate receptor subtype 2 blocks a hallucinogenic drug model of psychosis.
    Benneyworth MA; Xiang Z; Smith RL; Garcia EE; Conn PJ; Sanders-Bush E
    Mol Pharmacol; 2007 Aug; 72(2):477-84. PubMed ID: 17526600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The electrophysiology of prefrontal serotonin systems: therapeutic implications for mood and psychosis.
    Marek GJ; Aghajanian GK
    Biol Psychiatry; 1998 Dec; 44(11):1118-27. PubMed ID: 9836015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. When is a Proof-of-Concept (POC) not a POC? Pomaglumetad (LY2140023) as a Case Study for Antipsychotic Efficacy.
    Marek GJ
    Curr Pharm Des; 2015; 21(26):3788-96. PubMed ID: 26044978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological antagonism between 5-hydroxytryptamine(2A) and group II metabotropic glutamate receptors in prefrontal cortex.
    Marek GJ; Wright RA; Schoepp DD; Monn JA; Aghajanian GK
    J Pharmacol Exp Ther; 2000 Jan; 292(1):76-87. PubMed ID: 10604933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Targeting metabotropic glutamate receptors to develop novel antipsychotics].
    Chaki S; Yoshida S; Okuyama S
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2010 Nov; 30(5-6):207-13. PubMed ID: 21226317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orbitofrontal cortex neurons as a common target for classic and glutamatergic antipsychotic drugs.
    Homayoun H; Moghaddam B
    Proc Natl Acad Sci U S A; 2008 Nov; 105(46):18041-6. PubMed ID: 19004793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms underlying psychosis and antipsychotic treatment response in schizophrenia: insights from PET and SPECT imaging.
    Howes OD; Egerton A; Allan V; McGuire P; Stokes P; Kapur S
    Curr Pharm Des; 2009; 15(22):2550-9. PubMed ID: 19689327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restoring GABAergic signaling and neuronal synchrony in schizophrenia.
    Akbarian S
    Am J Psychiatry; 2008 Dec; 165(12):1507-9. PubMed ID: 19047328
    [No Abstract]   [Full Text] [Related]  

  • 11. Dopamine-glutamate interaction and antipsychotics mechanism of action: implication for new pharmacological strategies in psychosis.
    de Bartolomeis A; Fiore G; Iasevoli F
    Curr Pharm Des; 2005; 11(27):3561-94. PubMed ID: 16248808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional and anatomical aspects of prefrontal pathology in schizophrenia.
    Goldman-Rakic PS; Selemon LD
    Schizophr Bull; 1997; 23(3):437-58. PubMed ID: 9327508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serotonin model of schizophrenia: emerging role of glutamate mechanisms.
    Aghajanian GK; Marek GJ
    Brain Res Brain Res Rev; 2000 Mar; 31(2-3):302-12. PubMed ID: 10719157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting group II metabotropic glutamate (mGlu) receptors for the treatment of psychosis associated with Alzheimer's disease: selective activation of mGlu2 receptors amplifies beta-amyloid toxicity in cultured neurons, whereas dual activation of mGlu2 and mGlu3 receptors is neuroprotective.
    Caraci F; Molinaro G; Battaglia G; Giuffrida ML; Riozzi B; Traficante A; Bruno V; Cannella M; Merlo S; Wang X; Heinz BA; Nisenbaum ES; Britton TC; Drago F; Sortino MA; Copani A; Nicoletti F
    Mol Pharmacol; 2011 Mar; 79(3):618-26. PubMed ID: 21159998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deficient inhibitory cortical networks in antipsychotic-naive subjects at risk of developing first-episode psychosis and first-episode schizophrenia patients: a cross-sectional study.
    Hasan A; Wobrock T; Grefkes C; Labusga M; Levold K; Schneider-Axmann T; Falkai P; Müller H; Klosterkötter J; Bechdolf A
    Biol Psychiatry; 2012 Nov; 72(9):744-51. PubMed ID: 22502988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamatergic (N-methyl-D-aspartate receptor) hypofrontality in schizophrenia: too little juice or a miswired brain?
    Marek GJ; Behl B; Bespalov AY; Gross G; Lee Y; Schoemaker H
    Mol Pharmacol; 2010 Mar; 77(3):317-26. PubMed ID: 19933774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging therapeutic targets for schizophrenia: a framework for novel treatment strategies for psychosis.
    Sonnenschein SF; Grace A
    Expert Opin Ther Targets; 2021 Jan; 25(1):15-26. PubMed ID: 33170748
    [No Abstract]   [Full Text] [Related]  

  • 18. Involvement of glutamatergic and GABAergic transmission in MK-801-increased gamma band oscillation power in rat cortical electroencephalograms.
    Hiyoshi T; Kambe D; Karasawa J; Chaki S
    Neuroscience; 2014 Nov; 280():262-74. PubMed ID: 25220900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Familial and developmental abnormalities of front lobe function and neurochemistry in schizophrenia.
    Deakin FW; Simpson MD; Slater P; Hellewell JS
    J Psychopharmacol; 1997; 11(2):133-42. PubMed ID: 9254279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive Processing: A Circuit Approach to Psychosis.
    Keller GB; Sterzer P
    Annu Rev Neurosci; 2024 Aug; 47(1):85-101. PubMed ID: 38424472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.