These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 19241134)

  • 21. Chloroplastic metabolic engineering coupled with isoprenoid pool enhancement for committed taxanes biosynthesis in Nicotiana benthamiana.
    Li J; Mutanda I; Wang K; Yang L; Wang J; Wang Y
    Nat Commun; 2019 Oct; 10(1):4850. PubMed ID: 31649252
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production.
    Engels B; Dahm P; Jennewein S
    Metab Eng; 2008; 10(3-4):201-6. PubMed ID: 18485776
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The CYP701B1 of Physcomitrella patens is an ent-kaurene oxidase that resists inhibition by uniconazole-P.
    Miyazaki S; Katsumata T; Natsume M; Kawaide H
    FEBS Lett; 2011 Jun; 585(12):1879-83. PubMed ID: 21545802
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemistry. A balancing act for Taxol precursor pathways in E. coli.
    Liu T; Khosla C
    Science; 2010 Oct; 330(6000):44-5. PubMed ID: 20929799
    [No Abstract]   [Full Text] [Related]  

  • 25. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli.
    Ajikumar PK; Xiao WH; Tyo KE; Wang Y; Simeon F; Leonard E; Mucha O; Phon TH; Pfeifer B; Stephanopoulos G
    Science; 2010 Oct; 330(6000):70-4. PubMed ID: 20929806
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Taxadiene synthase structure and evolution of modular architecture in terpene biosynthesis.
    Köksal M; Jin Y; Coates RM; Croteau R; Christianson DW
    Nature; 2011 Jan; 469(7328):116-20. PubMed ID: 21160477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gibberellin precursor is involved in spore germination in the moss Physcomitrella patens.
    Anterola A; Shanle E; Mansouri K; Schuette S; Renzaglia K
    Planta; 2009 Mar; 229(4):1003-7. PubMed ID: 19112579
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The potential of Physcomitrella patens as a platform for the production of plant-based vaccines.
    Rosales-Mendoza S; Orellana-Escobedo L; Romero-Maldonado A; Decker EL; Reski R
    Expert Rev Vaccines; 2014 Feb; 13(2):203-12. PubMed ID: 24405402
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generating Targeted Gene Knockout Lines in Physcomitrella patens to Study Evolution of Stress-Responsive Mechanisms.
    Maronova M; Kalyna M
    Methods Mol Biol; 2016; 1398():221-34. PubMed ID: 26867627
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyclization of geranylgeranyl diphosphate to taxa-4(5),11(12)-diene is the committed step of taxol biosynthesis in Pacific yew.
    Koepp AE; Hezari M; Zajicek J; Vogel BS; LaFever RE; Lewis NG; Croteau R
    J Biol Chem; 1995 Apr; 270(15):8686-90. PubMed ID: 7721772
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of an inducible reporter gene system for the analysis of auxin distribution in the moss Physcomitrella patens.
    Bierfreund NM; Reski R; Decker EL
    Plant Cell Rep; 2003 Aug; 21(12):1143-52. PubMed ID: 12789498
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional cross-kingdom conservation of mammalian and moss (Physcomitrella patens) transcription, translation and secretion machineries.
    Gitzinger M; Parsons J; Reski R; Fussenegger M
    Plant Biotechnol J; 2009 Jan; 7(1):73-86. PubMed ID: 19021876
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens.
    Proust H; Hoffmann B; Xie X; Yoneyama K; Schaefer DG; Yoneyama K; Nogué F; Rameau C
    Development; 2011 Apr; 138(8):1531-9. PubMed ID: 21367820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of Physcomitrella patens actin 5' regions for high transgene expression: importance of 5' introns.
    Weise A; Rodriguez-Franco M; Timm B; Hermann M; Link S; Jost W; Gorr G
    Appl Microbiol Biotechnol; 2006 Apr; 70(3):337-45. PubMed ID: 16059684
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Taxadiene-5α-ol is a minor product of CYP725A4 when expressed in Escherichia coli.
    Sagwan-Barkdoll L; Anterola AM
    Biotechnol Appl Biochem; 2018 May; 65(3):294-305. PubMed ID: 28876471
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Specific gene silencing by artificial MicroRNAs in Physcomitrella patens: an alternative to targeted gene knockouts.
    Khraiwesh B; Ossowski S; Weigel D; Reski R; Frank W
    Plant Physiol; 2008 Oct; 148(2):684-93. PubMed ID: 18753280
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic analysis of the effects of re-transformation of transgenic lines of the moss Physcomitrella patens.
    Kammerer W; Cove DJ
    Mol Gen Genet; 1996 Feb; 250(3):380-2. PubMed ID: 8602154
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MSH1 maintains organelle genome stability and genetically interacts with RECA and RECG in the moss Physcomitrella patens.
    Odahara M; Kishita Y; Sekine Y
    Plant J; 2017 Aug; 91(3):455-465. PubMed ID: 28407383
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hormonal Diterpenoids Distinct to Gibberellins Regulate Protonema Differentiation in the Moss Physcomitrium patens.
    Nakajima M; Miyazaki S; Kawaide H
    Plant Cell Physiol; 2020 Dec; 61(11):1861-1868. PubMed ID: 33057650
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coexistence of plant and algal energy dissipation mechanisms in the moss Physcomitrella patens.
    Gerotto C; Alboresi A; Giacometti GM; Bassi R; Morosinotto T
    New Phytol; 2012 Nov; 196(3):763-773. PubMed ID: 23005032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.