BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 19241582)

  • 1. Core-shell biopolymer nanoparticles produced by electrostatic deposition of beet pectin onto heat-denatured beta-lactoglobulin aggregates.
    Santipanichwong R; Suphantharika M; Weiss J; McClements DJ
    J Food Sci; 2008 Aug; 73(6):N23-30. PubMed ID: 19241582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of protein-polysaccharide nanoparticle fabrication methods: impact of biopolymer complexation before or after particle formation.
    Jones OG; Decker EA; McClements DJ
    J Colloid Interface Sci; 2010 Apr; 344(1):21-9. PubMed ID: 20045114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and morphological characterization of biopolymer particles formed by electrostatic complexation of heat treated lactoferrin and anionic polysaccharides.
    Peinado I; Lesmes U; Andrés A; McClements JD
    Langmuir; 2010 Jun; 26(12):9827-34. PubMed ID: 20229991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biopolymer nanoparticles from heat-treated electrostatic protein-polysaccharide complexes: factors affecting particle characteristics.
    Jones OG; McClements DJ
    J Food Sci; 2010 Mar; 75(2):N36-43. PubMed ID: 20492252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of protein-rich coatings around lipid droplets using the electrostatic deposition method.
    Cho YH; Decker EA; McClements DJ
    Langmuir; 2010 Jun; 26(11):7937-45. PubMed ID: 20163085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of hydrogel particles by thermal treatment of beta-lactoglobulin-chitosan complexes.
    Hong YH; McClements DJ
    J Agric Food Chem; 2007 Jul; 55(14):5653-60. PubMed ID: 17567036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gelling properties of heat-denatured beta-lactoglobulin aggregates in a high-salt buffer.
    Vittayanont M; Steffe JF; Flegler SL; Smith DM
    J Agric Food Chem; 2002 May; 50(10):2987-92. PubMed ID: 11982430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of electrostatic interactions on formation and stability of emulsions containing oil droplets coated by beta-lactoglobulin-pectin complexes.
    Guzey D; McClements DJ
    J Agric Food Chem; 2007 Jan; 55(2):475-85. PubMed ID: 17227082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production and characterization of oil-in-water emulsions containing droplets stabilized by beta-lactoglobulin-pectin membranes.
    Moreau L; Kim HJ; Decker EA; McClements DJ
    J Agric Food Chem; 2003 Oct; 51(22):6612-7. PubMed ID: 14558785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Core-shell biopolymer nanoparticle delivery systems: synthesis and characterization of curcumin fortified zein-pectin nanoparticles.
    Hu K; Huang X; Gao Y; Huang X; Xiao H; McClements DJ
    Food Chem; 2015 Sep; 182():275-81. PubMed ID: 25842338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the emulsifying properties of β-lactoglobulin-wild almond gum (Amygdalus scoparia Spach) exudate complexes by heat.
    Golkar A; Nasirpour A; Keramat J
    J Sci Food Agric; 2017 Jan; 97(1):341-349. PubMed ID: 27059005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling the functional performance of emulsion-based delivery systems using multi-component biopolymer coatings.
    Li Y; Hu M; Xiao H; Du Y; Decker EA; McClements DJ
    Eur J Pharm Biopharm; 2010 Sep; 76(1):38-47. PubMed ID: 20470883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of formation and physicochemical characterization of thermally-induced beta-lactoglobulin aggregates.
    Zúñiga RN; Tolkach A; Kulozik U; Aguilera JM
    J Food Sci; 2010 Jun; 75(5):E261-8. PubMed ID: 20629872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuneable stability of nanoemulsions fabricated using spontaneous emulsification by biopolymer electrostatic deposition.
    Saberi AH; Zeeb B; Weiss J; McClements DJ
    J Colloid Interface Sci; 2015 Oct; 455():172-8. PubMed ID: 26070187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of physicochemical factors on the secondary structure of beta-lactoglobulin.
    Boye JI; Ismail AA; Alli I
    J Dairy Res; 1996 Feb; 63(1):97-109. PubMed ID: 8655744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gelation of chicken pectoralis major myosin and heat-denatured beta-lactoglobulin.
    Vittayanont M; Steffe JF; Flegler SL; Smith DM
    J Agric Food Chem; 2003 Jan; 51(3):760-5. PubMed ID: 12537454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale characterization of individualized beta-lactoglobulin microgels formed upon heat treatment under narrow pH range conditions.
    Schmitt C; Bovay C; Vuilliomenet AM; Rouvet M; Bovetto L; Barbar R; Sanchez C
    Langmuir; 2009 Jul; 25(14):7899-909. PubMed ID: 19594178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-scattering study of the structure of aggregates and gels formed by heat-denatured whey protein isolate and beta-lactoglobulin at neutral pH.
    Mahmoudi N; Mehalebi S; Nicolai T; Durand D; Riaublanc A
    J Agric Food Chem; 2007 Apr; 55(8):3104-11. PubMed ID: 17378578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biopolymer nanoparticles designed for polyunsaturated fatty acid vehiculization: Protein-polysaccharide ratio study.
    Perez AA; Sponton OE; Andermatten RB; Rubiolo AC; Santiago LG
    Food Chem; 2015 Dec; 188():543-50. PubMed ID: 26041229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient measurement and structure analysis of protein-polysaccharide multilayers at fluid interfaces.
    Bertsch P; Thoma A; Bergfreund J; Geue T; Fischer P
    Soft Matter; 2019 Aug; 15(31):6362-6368. PubMed ID: 31298681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.