These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 19241605)

  • 1. Effects of optokinetic stimulation induced by virtual reality on locomotion: a preliminary study.
    Ohyama S; Nishiike S; Watanabe H; Matsuoka K; Takeda N
    Acta Otolaryngol; 2008 Nov; 128(11):1211-4. PubMed ID: 19241605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does walking in a virtual environment induce unstable gait? An examination of vertical ground reaction forces.
    Hollman JH; Brey RH; Bang TJ; Kaufman KR
    Gait Posture; 2007 Jul; 26(2):289-94. PubMed ID: 17056258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal gait deviations in a virtual reality environment.
    Hollman JH; Brey RH; Robb RA; Bang TJ; Kaufman KR
    Gait Posture; 2006 Jun; 23(4):441-4. PubMed ID: 16095905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards virtual reality stimulation in force platform posturography.
    Tossavainen T; Juhola M; Pyykkö I; Toppila E; Aalto H; Honkavaara P
    Stud Health Technol Inform; 2001; 84(Pt 1):854-7. PubMed ID: 11604855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postural adaptation in elderly patients with instability and risk of falling after balance training using a virtual-reality system.
    Suárez H; Suárez A; Lavinsky L
    Int Tinnitus J; 2006; 12(1):41-4. PubMed ID: 17147038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of focal cerebellar lesions on the control and adaptation of gait.
    Ilg W; Giese MA; Gizewski ER; Schoch B; Timmann D
    Brain; 2008 Nov; 131(Pt 11):2913-27. PubMed ID: 18835866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Production of a virtual system to simulate nystagmus and ocular movements].
    Oliva Domínguez M
    Acta Otorrinolaringol Esp; 2007 Feb; 58(2):66-9. PubMed ID: 17371685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of virtual reality on gait variability.
    Katsavelis D; Mukherjee M; Decker L; Stergiou N
    Nonlinear Dynamics Psychol Life Sci; 2010 Jul; 14(3):239-56. PubMed ID: 20587300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive responses in eye-head-hand coordination following exposures to a virtual environment as a possible space flight analog.
    Harm DL; Taylor LC; Bloomberg JJ
    J Gravit Physiol; 2007 Jul; 14(1):P83-4. PubMed ID: 18372711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual reality stimuli for force platform posturography.
    Tossavainen T; Juhola M; Ilmari P; Aalto H; Toppila E
    Stud Health Technol Inform; 2002; 90():78-82. PubMed ID: 15460665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between postural stability and virtual environment adaptation.
    Reed-Jones RJ; Vallis LA; Reed-Jones JG; Trick LM
    Neurosci Lett; 2008 Apr; 435(3):204-9. PubMed ID: 18359162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cognitive load and dual-task performance during locomotion poststroke: a feasibility study using a functional virtual environment.
    Kizony R; Levin MF; Hughey L; Perez C; Fung J
    Phys Ther; 2010 Feb; 90(2):252-60. PubMed ID: 20023003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optic flow dominates visual scene polarity in causing adaptive modification of locomotor trajectory.
    Nomura Y; Mulavara AP; Richards JT; Brady R; Bloomberg JJ
    Brain Res Cogn Brain Res; 2005 Dec; 25(3):624-31. PubMed ID: 16216478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual reality cues for improvement of gait in patients with multiple sclerosis.
    Baram Y; Miller A
    Neurology; 2006 Jan; 66(2):178-81. PubMed ID: 16434649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of repeated optic flow stimulation on gait termination in humans.
    Okazaki S; Nishiike S; Watanabe H; Imai T; Uno A; Kitahara T; Horii A; Kamakura T; Takimoto Y; Takeda N; Inohara H
    Acta Otolaryngol; 2013 Mar; 133(3):246-52. PubMed ID: 23176088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Navigation by walking around: using the Pressure Mat to move in virtual worlds.
    Couvillion W; Lopez R; Ling J
    Stud Health Technol Inform; 2002; 85():103-9. PubMed ID: 15458068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinematic evaluation of virtual walking trajectories.
    Cirio G; Olivier AH; Marchal M; Pettré J
    IEEE Trans Vis Comput Graph; 2013 Apr; 19(4):671-80. PubMed ID: 23428452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of detection thresholds for redirected walking techniques.
    Steinicke F; Bruder G; Jerald J; Frenz H; Lappe M
    IEEE Trans Vis Comput Graph; 2010; 16(1):17-27. PubMed ID: 19910658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 'Initial state' coordinations reproduce the instant flexibility for human walking.
    Ohgane A; Ohgane K; Ei S; Mahara H; Ohtsuki T
    Biol Cybern; 2005 Dec; 93(6):426-35. PubMed ID: 16228223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using a virtual reality system to study balance and walking in a virtual outdoor environment: a pilot study.
    Nyberg L; Lundin-Olsson L; Sondell B; Backman A; Holmlund K; Eriksson S; Stenvall M; Rosendahl E; Maxhall M; Bucht G
    Cyberpsychol Behav; 2006 Aug; 9(4):388-95. PubMed ID: 16901241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.