These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 192421)
1. [The endogenous metabolism of Pseudomonas fluorescens in relation to the oxidation of ethanol, serine, and pyruvate]. Behr P; Meyer E; Wurtz B C R Seances Soc Biol Fil; 1976; 170(5):1003-8. PubMed ID: 192421 [TBL] [Abstract][Full Text] [Related]
2. [Effect of NADH and several Krebs cycle substrates on the endogenous metabolism of Pseudomonas fluorescens (type S)]. Behr P; Meyer E; Wurtz B C R Seances Soc Biol Fil; 1977; 171(4):954-8. PubMed ID: 201351 [TBL] [Abstract][Full Text] [Related]
3. [Role of NADH in the endogeneous metabolism of types Pseudomonas fluorescens]. Behr P; Meyer E; Wurtz B C R Seances Soc Biol Fil; 1974; 168(6-7):843-7. PubMed ID: 4156494 [No Abstract] [Full Text] [Related]
4. [Mechanism of oxidations in Pseudomonas fluorescens. VII. Oxidation of NADH by nonproliferating S type suspensions]. Supavej S; Behr P; Meyer E; Wurtz B C R Seances Soc Biol Fil; 1972; 166(8):1133-8. PubMed ID: 4349703 [No Abstract] [Full Text] [Related]
5. [Mechanism of glucose oxidation by a Pseudomonas fluorescens strain (type R). III. Influence of endogenous non-protein factors]. Wurtz B C R Seances Soc Biol Fil; 1975; 169(5):1303-9. PubMed ID: 131630 [TBL] [Abstract][Full Text] [Related]
6. Evidence for free radical generation due to NADH oxidation by aldehyde oxidase during ethanol metabolism. Mira L; Maia L; Barreira L; Manso CF Arch Biochem Biophys; 1995 Apr; 318(1):53-8. PubMed ID: 7726572 [TBL] [Abstract][Full Text] [Related]
7. Rate determining factors of ethanol oxidation in hepatocytes from starved and fed rats: effect of acetaldehyde concentration on the rate of NADH oxidation catalyzed by alcohol dehydrogenase. Vind C; Grunnet N Alcohol Alcohol Suppl; 1987; 1():295-9. PubMed ID: 3426694 [TBL] [Abstract][Full Text] [Related]
8. Broad-host-range plasmid-mediated metabolic perturbations in Pseudomonas fluorescens 13525. Buch AD; Archana G; Naresh Kumar G Appl Microbiol Biotechnol; 2010 Sep; 88(1):209-18. PubMed ID: 20571795 [TBL] [Abstract][Full Text] [Related]
9. [Effect of pyruvate dehydrogenase coenzymes on pyruvate oxidation and on the absorption of NAD by liver mitochondria normally and following a gravitational overload in white rats]. Totskiĭ VN; Ol'shanetskaia VA; Rozanov AIa; Petrov SA Vopr Med Khim; 1974 May; 20(3):290-4. PubMed ID: 4152085 [No Abstract] [Full Text] [Related]
10. Alteration of hepatic ethanol metabolism in CCL4-intoxicated rats: analysis using isolated liver perfusion system. Yuki T; Hashimoto T; Kuriyama K; Ogasawara T; Takino T Subst Alcohol Actions Misuse; 1982; 3(3):163-75. PubMed ID: 6763360 [TBL] [Abstract][Full Text] [Related]
11. Bacterial attack on phenolic ethers. Dealkylation of higher ethers and further observations on O-demethylases. Cartwright NJ; Holdom KS; Broadbent DA Microbios; 1971 Mar; 3(10):113-30. PubMed ID: 4147485 [No Abstract] [Full Text] [Related]
12. Carbohydrate oxidation by Pseudomonas fluorescens VI. Conversion of 2-keto-6-phosphogluconate to pyruvate. FRAMPTON EW; WOOD WA J Biol Chem; 1961 Oct; 236():2571-7. PubMed ID: 13894458 [No Abstract] [Full Text] [Related]
13. Oxidation of carbon monoxide and methane by Pseudomonas methanica. Ferenci T; Strom T; Quayle JR J Gen Microbiol; 1975 Nov; 91(1):79-91. PubMed ID: 467 [TBL] [Abstract][Full Text] [Related]
14. Metabolic networks to combat oxidative stress in Pseudomonas fluorescens. Mailloux RJ; Lemire J; Appanna VD Antonie Van Leeuwenhoek; 2011 Mar; 99(3):433-42. PubMed ID: 21153706 [TBL] [Abstract][Full Text] [Related]
15. [Metabolic switch from aerobic to anaerobic growth in Sacharomyces carlsbergensis following addition of glucose]. von Klitzing L Zentralbl Bakteriol Orig A; 1972 May; 220(1):362-7. PubMed ID: 4145601 [No Abstract] [Full Text] [Related]
16. Analysis of the respiratory chain in Ethanologenic Zymomonas mobilis with a cyanide-resistant bd-type ubiquinol oxidase as the only terminal oxidase and its possible physiological roles. Sootsuwan K; Lertwattanasakul N; Thanonkeo P; Matsushita K; Yamada M J Mol Microbiol Biotechnol; 2008; 14(4):163-75. PubMed ID: 18089934 [TBL] [Abstract][Full Text] [Related]
17. Hydrogen transfer into mitochondria in the metabolism of ethanol. I. Oxidation of extramitochondrial reduced nicotinamide-adenine dinucleotide by mitochondria. Hassinen I Ann Med Exp Biol Fenn; 1967; 45(1):35-45. PubMed ID: 4294130 [No Abstract] [Full Text] [Related]
18. The pH-dependent binding of NADH and subsequent enzyme isomerization of human liver beta 3 beta 3 alcohol dehydrogenase. Stone CL; Jipping MB; Owusu-Dekyi K; Hurley TD; Li TK; Bosron WF Biochemistry; 1999 May; 38(18):5829-35. PubMed ID: 10231534 [TBL] [Abstract][Full Text] [Related]
19. Regulation of ethanol metabolism in the rat. Cheema-Dhadli S; Halperin FA; Sonnenberg K; MacMillan V; Halperin ML Biochem Cell Biol; 1987 May; 65(5):458-66. PubMed ID: 3620161 [TBL] [Abstract][Full Text] [Related]
20. In vivo and in vitro 1-methylxanthine metabolism in the rat. Evidence that the dehydrogenase form of xanthine oxidase predominates in intact perfused liver. Reinke LA; Nakamura M; Logan L; Christensen HD; Carney JM Drug Metab Dispos; 1987; 15(3):295-9. PubMed ID: 2886302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]