These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 1924297)

  • 1. 31P saturation transfer and phosphocreatine imaging in the monkey brain.
    Mora B; Narasimhan PT; Ross BD; Allman J; Barker PB
    Proc Natl Acad Sci U S A; 1991 Oct; 88(19):8372-6. PubMed ID: 1924297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy.
    Sappey-Marinier D; Calabrese G; Fein G; Hugg JW; Biggins C; Weiner MW
    J Cereb Blood Flow Metab; 1992 Jul; 12(4):584-92. PubMed ID: 1618937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 31P magnetization transfer studies in the monkey brain.
    Mora BN; Narasimhan PT; Ross BD
    Magn Reson Med; 1992 Jul; 26(1):100-15. PubMed ID: 1625557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurements of exchange in the reaction catalysed by creatine kinase using 14C and 15N isotope labels and the NMR technique of saturation transfer.
    Brindle KM; Radda GK
    Biochim Biophys Acta; 1985 Jun; 829(2):188-201. PubMed ID: 3995051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related changes in swine brain creatine kinase-catalyzed 31P exchange measured in vivo using 31P NMR magnetization transfer.
    Corbett RJ; Laptook AR
    J Cereb Blood Flow Metab; 1994 Nov; 14(6):1070-7. PubMed ID: 7929650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creatine kinase-catalyzed ATP-phosphocreatine exchange: comparison of 31P-NMR saturation transfer technique and radioisotope tracer methods.
    Kupriyanov VV; Lyulina NV; Steinschneider AYa ; Zueva MYu ; Saks VA
    FEBS Lett; 1986 Nov; 208(1):89-93. PubMed ID: 3770212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 31p NMR saturation transfer measurements of the steady state rates of creatine kinase and ATP synthetase in the rat brain.
    Shoubridge EA; Briggs RW; Radda GK
    FEBS Lett; 1982 Apr; 140(2):289-92. PubMed ID: 6282642
    [No Abstract]   [Full Text] [Related]  

  • 8. [ATP-phosphocreatine metabolism catalyzed by creatine kinase. Comparison of saturation transfer (NMR) and isotope labeling technics].
    Kupriianov VV; Liulina NV; Shteĭnshneĭder AIa; Zueva MIu; Saks VA
    Bioorg Khim; 1987 Mar; 13(3):300-8. PubMed ID: 3593427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myocardial adaptation during acute hibernation: mechanisms of phosphocreatine recovery.
    Schaefer S; Carr LJ; Kreutzer U; Jue T
    Cardiovasc Res; 1993 Nov; 27(11):2044-51. PubMed ID: 8287416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain creatine phosphate and creatine kinase in mice fed an analogue of creatine.
    Holtzman D; McFarland E; Moerland T; Koutcher J; Kushmerick MJ; Neuringer LJ
    Brain Res; 1989 Mar; 483(1):68-77. PubMed ID: 2706511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of in vivo catalysis by creatine kinase in avian skeletal muscles with different fibre composition.
    Smith MB; Briggs RW; Shoubridge EA; Hayes DJ; Radda GK
    Biochim Biophys Acta; 1985 Jul; 846(1):174-8. PubMed ID: 4016154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination of 31P-NMR magnetization transfer and radioisotope exchange methods for assessment of an enzyme reaction mechanism: rate-determining steps of the creatine kinase reaction.
    Kupriyanov VV; Balaban RS; Lyulina NV; Steinschneider AYa ; Saks VA
    Biochim Biophys Acta; 1990 Dec; 1020(3):290-304. PubMed ID: 2248962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphocreatine and creatine kinase in piglet cerebral gray and white matter in situ.
    Holtzman D; Mulkern R; Tsuji M; Cook C; Meyers R
    Dev Neurosci; 1996; 18(5-6):535-41. PubMed ID: 8940629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 31P magnetization transfer studies of creatine kinase kinetics in living rabbit brain.
    Degani H; Alger JR; Shulman RG; Petroff OA; Prichard JW
    Magn Reson Med; 1987 Jul; 5(1):1-12. PubMed ID: 3657491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphocreatine and ATP regulation in the hypoxic developing rat brain.
    Tsuji M; Allred E; Jensen F; Holtzman D
    Brain Res Dev Brain Res; 1995 Apr; 85(2):192-200. PubMed ID: 7600667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging of human brain creatine kinase activity in vivo.
    Cadoux-Hudson TA; Blackledge MJ; Radda GK
    FASEB J; 1989 Dec; 3(14):2660-6. PubMed ID: 2629743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy metabolism in rat brain in vivo studied by 31P nuclear magnetic resonance: changes during postnatal development.
    Ogawa S; Lee TM; Glynn P
    Arch Biochem Biophys; 1986 Jul; 248(1):43-52. PubMed ID: 3729429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increase of creatine kinase activity in the visual cortex of human brain during visual stimulation: a 31P magnetization transfer study.
    Chen W; Zhu XH; Adriany G; Ugurbil K
    Magn Reson Med; 1997 Oct; 38(4):551-7. PubMed ID: 9324321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo brain phosphocreatine and ATP regulation in mice fed a creatine analog.
    Holtzman D; Meyers R; O'Gorman E; Khait I; Wallimann T; Allred E; Jensen F
    Am J Physiol; 1997 May; 272(5 Pt 1):C1567-77. PubMed ID: 9176148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphocreatine protects ATP from a fructose load in transgenic mouse liver expressing creatine kinase.
    Brosnan MJ; Chen LH; Wheeler CE; Van Dyke TA; Koretsky AP
    Am J Physiol; 1991 Jun; 260(6 Pt 1):C1191-200. PubMed ID: 2058653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.