These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 19243007)

  • 1. Na+ transport in cardiac myocytes; Implications for excitation-contraction coupling.
    Bers DM; Despa S
    IUBMB Life; 2009 Mar; 61(3):215-21. PubMed ID: 19243007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiac myocytes Ca2+ and Na+ regulation in normal and failing hearts.
    Bers DM; Despa S
    J Pharmacol Sci; 2006; 100(5):315-22. PubMed ID: 16552170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac sodium transport and excitation-contraction coupling.
    Aronsen JM; Swift F; Sejersted OM
    J Mol Cell Cardiol; 2013 Aug; 61():11-9. PubMed ID: 23774049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypokalaemia induces Ca²⁺ overload and Ca²⁺ waves in ventricular myocytes by reducing Na⁺,K⁺-ATPase α₂ activity.
    Aronsen JM; Skogestad J; Lewalle A; Louch WE; Hougen K; Stokke MK; Swift F; Niederer S; Smith NP; Sejersted OM; Sjaastad I
    J Physiol; 2015 Mar; 593(6):1509-21. PubMed ID: 25772299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Ca2+ and Na+ in normal and failing cardiac myocytes.
    Bers DM; Despa S; Bossuyt J
    Ann N Y Acad Sci; 2006 Oct; 1080():165-77. PubMed ID: 17132783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular [Na(+)] modulates synergy between Na(+)/Ca (2+) exchanger and L-type Ca (2+) current in cardiac excitation-contraction coupling during action potentials.
    Ramirez RJ; Sah R; Liu J; Rose RA; Backx PH
    Basic Res Cardiol; 2011 Nov; 106(6):967-77. PubMed ID: 21779914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na⁺ transport in the normal and failing heart - remember the balance.
    Despa S; Bers DM
    J Mol Cell Cardiol; 2013 Aug; 61():2-10. PubMed ID: 23608603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phospholemman-phosphorylation mediates the beta-adrenergic effects on Na/K pump function in cardiac myocytes.
    Despa S; Bossuyt J; Han F; Ginsburg KS; Jia LG; Kutchai H; Tucker AL; Bers DM
    Circ Res; 2005 Aug; 97(3):252-9. PubMed ID: 16002746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of the cardiac Na
    Scranton K; John S; Escobar A; Goldhaber JI; Ottolia M
    Cell Calcium; 2020 May; 87():102140. PubMed ID: 32070924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of reverse Na
    Torres NS
    Am J Physiol Heart Circ Physiol; 2021 Feb; 320(2):H593-H603. PubMed ID: 33275521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium entry via Na/Ca exchange during the action potential directly contributes to contraction of failing human ventricular myocytes.
    Weisser-Thomas J; Piacentino V; Gaughan JP; Margulies K; Houser SR
    Cardiovasc Res; 2003 Mar; 57(4):974-85. PubMed ID: 12650875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KB-R7943 block of Ca(2+) influx via Na(+)/Ca(2+) exchange does not alter twitches or glycoside inotropy but prevents Ca(2+) overload in rat ventricular myocytes.
    Satoh H; Ginsburg KS; Qing K; Terada H; Hayashi H; Bers DM
    Circulation; 2000 Mar; 101(12):1441-6. PubMed ID: 10736290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of oxidants on calcium and sodium movement in healthy and diseased cardiac myocytes.
    Sag CM; Wagner S; Maier LS
    Free Radic Biol Med; 2013 Oct; 63():338-49. PubMed ID: 23732518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling of the Na+/K+-ATPase to Ankyrin B controls Na+/Ca2+ exchanger activity in cardiomyocytes.
    Skogestad J; Aronsen JM; Tovsrud N; Wanichawan P; Hougen K; Stokke MK; Carlson CR; Sjaastad I; Sejersted OM; Swift F
    Cardiovasc Res; 2020 Jan; 116(1):78-90. PubMed ID: 30949686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of cardiac myocyte contractility by phospholemman: Na+/Ca2+ exchange versus Na+ -K+ -ATPase.
    Song J; Zhang XQ; Wang J; Cheskis E; Chan TO; Feldman AM; Tucker AL; Cheung JY
    Am J Physiol Heart Circ Physiol; 2008 Oct; 295(4):H1615-25. PubMed ID: 18708446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. H⁺-activated Na⁺ influx in the ventricular myocyte couples Ca²⁺-signalling to intracellular pH.
    Garciarena CD; Youm JB; Swietach P; Vaughan-Jones RD
    J Mol Cell Cardiol; 2013 Aug; 61():51-9. PubMed ID: 23602948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na+/Ca2+ exchange and Na+/K+-ATPase in the heart.
    Shattock MJ; Ottolia M; Bers DM; Blaustein MP; Boguslavskyi A; Bossuyt J; Bridge JH; Chen-Izu Y; Clancy CE; Edwards A; Goldhaber J; Kaplan J; Lingrel JB; Pavlovic D; Philipson K; Sipido KR; Xie ZJ
    J Physiol; 2015 Mar; 593(6):1361-82. PubMed ID: 25772291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional coupling of alpha(2)-isoform Na(+)/K(+)-ATPase and Ca(2+) extrusion through the Na(+)/Ca(2+)-exchanger in cardiomyocytes.
    Swift F; Tovsrud N; Sjaastad I; Sejersted OM; Niggli E; Egger M
    Cell Calcium; 2010 Jul; 48(1):54-60. PubMed ID: 20667414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular potassium dependence of the Na+-K+-ATPase in cardiac myocytes: isoform specificity and effect of phospholemman.
    Han F; Tucker AL; Lingrel JB; Despa S; Bers DM
    Am J Physiol Cell Physiol; 2009 Sep; 297(3):C699-705. PubMed ID: 19570895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered contractility and [Ca2+]i homeostasis in phospholemman-deficient murine myocytes: role of Na+/Ca2+ exchange.
    Tucker AL; Song J; Zhang XQ; Wang J; Ahlers BA; Carl LL; Mounsey JP; Moorman JR; Rothblum LI; Cheung JY
    Am J Physiol Heart Circ Physiol; 2006 Nov; 291(5):H2199-209. PubMed ID: 16751288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.