BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19243075)

  • 1. Bone marrow-derived cells in the central nervous system of a mouse model of amyotrophic lateral sclerosis are associated with blood vessels and express CX(3)CR1.
    Lewis CA; Solomon JN; Rossi FM; Krieger C
    Glia; 2009 Oct; 57(13):1410-9. PubMed ID: 19243075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin and distribution of bone marrow-derived cells in the central nervous system in a mouse model of amyotrophic lateral sclerosis.
    Solomon JN; Lewis CA; Ajami B; Corbel SY; Rossi FM; Krieger C
    Glia; 2006 May; 53(7):744-53. PubMed ID: 16518833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wild-type bone marrow cells ameliorate the phenotype of SOD1-G93A ALS mice and contribute to CNS, heart and skeletal muscle tissues.
    Corti S; Locatelli F; Donadoni C; Guglieri M; Papadimitriou D; Strazzer S; Del Bo R; Comi GP
    Brain; 2004 Nov; 127(Pt 11):2518-32. PubMed ID: 15469951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intra-bone marrow-bone marrow transplantation slows disease progression and prolongs survival in G93A mutant SOD1 transgenic mice, an animal model mouse for amyotrophic lateral sclerosis.
    Ohnishi S; Ito H; Suzuki Y; Adachi Y; Wate R; Zhang J; Nakano S; Kusaka H; Ikehara S
    Brain Res; 2009 Nov; 1296():216-24. PubMed ID: 19686706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The monocyte chemokine receptor CX3CR1 does not play a significant role in the pathogenesis of experimental autoimmune uveoretinitis.
    Kezic J; McMenamin PG
    Invest Ophthalmol Vis Sci; 2010 Oct; 51(10):5121-7. PubMed ID: 20463325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of age and Cx3cr1 deficiency on retinal microglia in the Ins2(Akita) diabetic mouse.
    Kezic JM; Chen X; Rakoczy EP; McMenamin PG
    Invest Ophthalmol Vis Sci; 2013 Jan; 54(1):854-63. PubMed ID: 23307960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of CX3CR1 receptor in monocyte/macrophage driven neovascularization.
    Kumar AH; Martin K; Turner EC; Buneker CK; Dorgham K; Deterre P; Caplice NM
    PLoS One; 2013; 8(2):e57230. PubMed ID: 23437346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The chemokine receptor CX3CR1 mediates homing of MHC class II-positive cells to the normal mouse corneal epithelium.
    Chinnery HR; Ruitenberg MJ; Plant GW; Pearlman E; Jung S; McMenamin PG
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1568-74. PubMed ID: 17389486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myelosuppressive conditioning using busulfan enables bone marrow cell accumulation in the spinal cord of a mouse model of amyotrophic lateral sclerosis.
    Lewis CA; Manning J; Barr C; Peake K; Humphries RK; Rossi F; Krieger C
    PLoS One; 2013; 8(4):e60661. PubMed ID: 23593276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MyD88-deficient bone marrow cells accelerate onset and reduce survival in a mouse model of amyotrophic lateral sclerosis.
    Kang J; Rivest S
    J Cell Biol; 2007 Dec; 179(6):1219-30. PubMed ID: 18086918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulation of murine subretinal macrophages: effects of age, pigmentation and CX3CR1.
    Chinnery HR; McLenachan S; Humphries T; Kezic JM; Chen X; Ruitenberg MJ; McMenamin PG
    Neurobiol Aging; 2012 Aug; 33(8):1769-76. PubMed ID: 21570740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cranial irradiation induces bone marrow-derived microglia in adult mouse brain tissue.
    Okonogi N; Nakamura K; Suzuki Y; Suto N; Suzue K; Kaminuma T; Nakano T; Hirai H
    J Radiat Res; 2014 Jul; 55(4):713-9. PubMed ID: 24706998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis.
    Beers DR; Henkel JS; Zhao W; Wang J; Huang A; Wen S; Liao B; Appel SH
    Brain; 2011 May; 134(Pt 5):1293-314. PubMed ID: 21596768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone Marrow-Derived Cell Accumulation in the Spinal Cord Is Independent of Peripheral Mobilization in a Mouse Model of Amyotrophic Lateral Sclerosis.
    Peake K; Manning J; Lewis CA; Tran K; Rossi F; Krieger C
    Front Neurol; 2017; 8():75. PubMed ID: 28337172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient recovery in a rat model of familial amyotrophic lateral sclerosis after transplantation of motor neurons derived from mouse embryonic stem cells.
    López-González R; Kunckles P; Velasco I
    Cell Transplant; 2009; 18(10):1171-81. PubMed ID: 19660174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone marrow-derived inducible microglia-like cells ameliorate motor function and survival in a mouse model of amyotrophic lateral sclerosis.
    Kobashi S; Terashima T; Katagi M; Urushitani M; Kojima H
    Cytotherapy; 2022 Aug; 24(8):789-801. PubMed ID: 35393241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the PPARgamma activator pioglitazone on p38 MAP kinase and IkappaBalpha in the spinal cord of a transgenic mouse model of amyotrophic lateral sclerosis.
    Shibata N; Kawaguchi-Niida M; Yamamoto T; Toi S; Hirano A; Kobayashi M
    Neuropathology; 2008 Aug; 28(4):387-98. PubMed ID: 18312546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone marrow-derived CX3CR1 progenitors contribute to neointimal smooth muscle cells via fractalkine CX3CR1 interaction.
    Kumar AH; Metharom P; Schmeckpeper J; Weiss S; Martin K; Caplice NM
    FASEB J; 2010 Jan; 24(1):81-92. PubMed ID: 19745110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficacy of the coadministration of granulocyte colony-stimulating factor and stem cell factor in the activation of intrinsic cells after spinal cord injury in mice.
    Osada T; Watanabe M; Hasuo A; Imai M; Suyama K; Sakai D; Kawada H; Matsumae M; Mochida J
    J Neurosurg Spine; 2010 Oct; 13(4):516-23. PubMed ID: 20887150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroectodermal and microglial differentiation of bone marrow cells in the mouse spinal cord and sensory ganglia.
    Corti S; Locatelli F; Donadoni C; Strazzer S; Salani S; Del Bo R; Caccialanza M; Bresolin N; Scarlato G; Comi GP
    J Neurosci Res; 2002 Dec; 70(6):721-33. PubMed ID: 12444594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.