BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 19243088)

  • 1. CypScore: Quantitative prediction of reactivity toward cytochromes P450 based on semiempirical molecular orbital theory.
    Hennemann M; Friedl A; Lobell M; Keldenich J; Hillisch A; Clark T; Göller AH
    ChemMedChem; 2009 Apr; 4(4):657-69. PubMed ID: 19243088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast prediction of cytochrome P450 mediated drug metabolism.
    Rydberg P; Vasanthanathan P; Oostenbrink C; Olsen L
    ChemMedChem; 2009 Dec; 4(12):2070-9. PubMed ID: 19852016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of activation energies for aromatic oxidation by cytochrome P450.
    Rydberg P; Ryde U; Olsen L
    J Phys Chem A; 2008 Dec; 112(50):13058-65. PubMed ID: 18986131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EaMEAD: Activation energy prediction of cytochrome P450 mediated metabolism with effective atomic descriptors.
    Kim DN; Cho KH; Oh WS; Lee CJ; Lee SK; Jung J; No KT
    J Chem Inf Model; 2009 Jul; 49(7):1643-54. PubMed ID: 19545128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between electrochemistry/mass spectrometry and cytochrome P450 catalyzed oxidation reactions.
    Jurva U; Wikström HV; Weidolf L; Bruins AP
    Rapid Commun Mass Spectrom; 2003; 17(8):800-10. PubMed ID: 12672134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mimicry of phase I drug metabolism--novel methods for metabolite characterization and synthesis.
    Johansson T; Weidolf L; Jurva U
    Rapid Commun Mass Spectrom; 2007; 21(14):2323-31. PubMed ID: 17575570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An analysis of the regioselectivity of aromatic hydroxylation and N-oxygenation by cytochrome P450 enzymes.
    Dowers TS; Rock DA; Rock DA; Perkins BN; Jones JP
    Drug Metab Dispos; 2004 Mar; 32(3):328-32. PubMed ID: 14977867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based drug metabolism predictions for drug design.
    Sun H; Scott DO
    Chem Biol Drug Des; 2010 Jan; 75(1):3-17. PubMed ID: 19878193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational models for cytochrome P450: a predictive electronic model for aromatic oxidation and hydrogen atom abstraction.
    Jones JP; Mysinger M; Korzekwa KR
    Drug Metab Dispos; 2002 Jan; 30(1):7-12. PubMed ID: 11744605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regioselectivity prediction of CYP1A2-mediated phase I metabolism.
    Jung J; Kim ND; Kim SY; Choi I; Cho KH; Oh WS; Kim DN; No KT
    J Chem Inf Model; 2008 May; 48(5):1074-80. PubMed ID: 18412330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism and structure-reactivity relationships for aromatic hydroxylation by cytochrome P450.
    Bathelt CM; Ridder L; Mulholland AJ; Harvey JN
    Org Biomol Chem; 2004 Oct; 2(20):2998-3005. PubMed ID: 15480465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding P450-mediated Bio-transformations into Epoxide and Phenolic Metabolites.
    Tomberg A; Pottel J; Liu Z; Labute P; Moitessier N
    Angew Chem Int Ed Engl; 2015 Nov; 54(46):13743-7. PubMed ID: 26418278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of human cytochrome p450-mediated drug metabolism using unsupervised machine learning approach.
    Korolev D; Balakin KV; Nikolsky Y; Kirillov E; Ivanenkov YA; Savchuk NP; Ivashchenko AA; Nikolskaya T
    J Med Chem; 2003 Aug; 46(17):3631-43. PubMed ID: 12904067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pragmatic approach using first-principle methods to address site of metabolism with implications for reactive metabolite formation.
    Hsiao YW; Petersson C; Svensson MA; Norinder U
    J Chem Inf Model; 2012 Mar; 52(3):686-95. PubMed ID: 22299574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-temperature rapid-scan detection of reactive intermediates in epoxidation reactions catalyzed by a new enzyme mimic of cytochrome p450.
    Hessenauer-Ilicheva N; Franke A; Meyer D; Woggon WD; van Eldik R
    J Am Chem Soc; 2007 Oct; 129(41):12473-9. PubMed ID: 17880072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic isotope effects implicate a single oxidant for cytochrome P450-mediated O-dealkylation, N-oxygenation, and aromatic hydroxylation of 6-methoxyquinoline.
    Dowers TS; Jones JP
    Drug Metab Dispos; 2006 Aug; 34(8):1288-90. PubMed ID: 16714370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting activation enthalpies of cytochrome-P450-mediated hydrogen abstractions. 2. Comparison of semiempirical PM3, SAM1, and AM1 with a density functional theory method.
    Mayeno AN; Robinson JL; Yang RS; Reisfeld B
    J Chem Inf Model; 2009 Jul; 49(7):1692-703. PubMed ID: 19522482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the cytochrome P450-mediated oxidative metabolism of the terpene alcohol linalool: indication of biological epoxidation.
    Meesters RJ; Duisken M; Hollender J
    Xenobiotica; 2007 Jun; 37(6):604-17. PubMed ID: 17614007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site of metabolism prediction for six biotransformations mediated by cytochromes P450.
    Zheng M; Luo X; Shen Q; Wang Y; Du Y; Zhu W; Jiang H
    Bioinformatics; 2009 May; 25(10):1251-8. PubMed ID: 19286831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The oxenoid model of the mechanism of activating molecular oxygen by cytochrome p450: the role of substrate structure].
    Kuznetsov AV
    Mol Biol (Mosk); 1990; 24(5):1373-80. PubMed ID: 2290428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.