These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 19243153)

  • 1. Dissociation behavior of weak polyelectrolyte brushes on a planar surface.
    Dong R; Lindau M; Ober CK
    Langmuir; 2009 Apr; 25(8):4774-9. PubMed ID: 19243153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimuli-responsive polyelectrolyte block copolymer brushes synthesized from the Si wafer via atom-transfer radical polymerization.
    Yu K; Wang H; Xue L; Han Y
    Langmuir; 2007 Jan; 23(3):1443-52. PubMed ID: 17241071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of dense poly(acrylic acid) brushes and their interaction with amine-functional silsesquioxane nanoparticles.
    Retsch M; Walther A; Loos K; Müller AH
    Langmuir; 2008 Sep; 24(17):9421-9. PubMed ID: 18661962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Room temperature, aqueous post-polymerization modification of glycidyl methacrylate-containing polymer brushes prepared via surface-initiated atom transfer radical polymerization.
    Barbey R; Klok HA
    Langmuir; 2010 Dec; 26(23):18219-30. PubMed ID: 21062007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fourier transform infrared studies on the dissociation behavior of metal-chelating polyelectrolyte brushes.
    Roman MJ; Decker EA; Goddard JM
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5383-7. PubMed ID: 24697588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible pH-controlled switching of poly(methacrylic acid) grafts for functional biointerfaces.
    Santonicola MG; de Groot GW; Memesa M; Meszyńska A; Vancso GJ
    Langmuir; 2010 Nov; 26(22):17513-9. PubMed ID: 20932041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructure of a poly(acrylic acid) brush and its transition in the amphiphilic diblock copolymer monolayer on the water surface.
    Matsuoka H; Suetomi Y; Kaewsaiha P; Matsumoto K
    Langmuir; 2009 Dec; 25(24):13752-62. PubMed ID: 19583229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and swelling behavior of pH-responsive polybase brushes.
    Sanjuan S; Perrin P; Pantoustier N; Tran Y
    Langmuir; 2007 May; 23(10):5769-78. PubMed ID: 17425342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the responsive behavior of polyelectrolyte brushes using electrochemical impedance spectroscopy.
    Zhou F; Hu H; Yu B; Osborne VL; Huck WT; Liu W
    Anal Chem; 2007 Jan; 79(1):176-82. PubMed ID: 17194136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterned poly(N-isopropylacrylamide) brushes on silica surfaces by microcontact printing followed by surface-initiated polymerization.
    Tu H; Heitzman CE; Braun PV
    Langmuir; 2004 Sep; 20(19):8313-20. PubMed ID: 15350108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimuli-responsive polyelectrolyte polymer brushes prepared via atom-transfer radical polymerization.
    Ayres N; Boyes SG; Brittain WJ
    Langmuir; 2007 Jan; 23(1):182-9. PubMed ID: 17190502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motion of integrated CdS nanoparticles by phase separation of block copolymer brushes.
    Yu K; Wang H; Han Y
    Langmuir; 2007 Aug; 23(17):8957-64. PubMed ID: 17636998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High density scaffolding of functional polymer brushes: surface initiated atom transfer radical polymerization of active esters.
    Orski SV; Fries KH; Sheppard GR; Locklin J
    Langmuir; 2010 Feb; 26(3):2136-43. PubMed ID: 20099926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introducing surface-tethered poly(acrylic acid) brushes as 3D functional thin film for biosensing applications.
    Akkahat P; Hoven VP
    Colloids Surf B Biointerfaces; 2011 Aug; 86(1):198-205. PubMed ID: 21530190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning the pH sensitivity of poly(methacrylic acid) brushes.
    Schüwer N; Klok HA
    Langmuir; 2011 Apr; 27(8):4789-96. PubMed ID: 21425827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ studies on the switching behavior of ultrathin poly(acrylic acid) polyelectrolyte brushes in different aqueous environments.
    Aulich D; Hoy O; Luzinov I; Brücher M; Hergenröder R; Bittrich E; Eichhorn KJ; Uhlmann P; Stamm M; Esser N; Hinrichs K
    Langmuir; 2010 Aug; 26(15):12926-32. PubMed ID: 20602533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of polyampholyte brushes via controlled radical polymerization and their assembly in solution.
    Jhon YK; Arifuzzaman S; Özçam AE; Kiserow DJ; Genzer J
    Langmuir; 2012 Jan; 28(1):872-82. PubMed ID: 22112235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-pot preparation of ferrocene-functionalized polymer brushes on gold substrates by combined surface-initiated atom transfer radical polymerization and "click chemistry".
    Xu LQ; Wan D; Gong HF; Neoh KG; Kang ET; Fu GD
    Langmuir; 2010 Oct; 26(19):15376-82. PubMed ID: 20839788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface and bulk collapse transitions of thermoresponsive polymer brushes.
    Laloyaux X; Mathy B; Nysten B; Jonas AM
    Langmuir; 2010 Jan; 26(2):838-47. PubMed ID: 19842635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization.
    Majoinen J; Walther A; McKee JR; Kontturi E; Aseyev V; Malho JM; Ruokolainen J; Ikkala O
    Biomacromolecules; 2011 Aug; 12(8):2997-3006. PubMed ID: 21740051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.