These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 19243153)

  • 21. Synthesis and characterization of poly(3-sulfopropylmethacrylate) brushes for potential antibacterial applications.
    Ramstedt M; Cheng N; Azzaroni O; Mossialos D; Mathieu HJ; Huck WT
    Langmuir; 2007 Mar; 23(6):3314-21. PubMed ID: 17291016
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes.
    Kobayashi M; Terayama Y; Yamaguchi H; Terada M; Murakami D; Ishihara K; Takahara A
    Langmuir; 2012 May; 28(18):7212-22. PubMed ID: 22500465
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stability and nonfouling properties of poly(poly(ethylene glycol) methacrylate) brushes under cell culture conditions.
    Tugulu S; Klok HA
    Biomacromolecules; 2008 Mar; 9(3):906-12. PubMed ID: 18260637
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transmission electron microscopy study of solvent-induced phase morphologies of environmentally responsive mixed homopolymer brushes on silica particles.
    Zhu L; Zhao B
    J Phys Chem B; 2008 Sep; 112(37):11529-36. PubMed ID: 18712905
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Grafting acrylic polymers from flat nickel and copper surfaces by surface-initiated atom transfer radical polymerization.
    Chen R; Zhu S; Maclaughlin S
    Langmuir; 2008 Jun; 24(13):6889-96. PubMed ID: 18507417
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Environmentally responsive "hairy" nanoparticles: mixed homopolymer brushes on silica nanoparticles synthesized by living radical polymerization techniques.
    Li D; Sheng X; Zhao B
    J Am Chem Soc; 2005 May; 127(17):6248-56. PubMed ID: 15853330
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Switching transport through nanopores with pH-responsive polymer brushes for controlled ion permeability.
    de Groot GW; Santonicola MG; Sugihara K; Zambelli T; Reimhult E; Vörös J; Vancso GJ
    ACS Appl Mater Interfaces; 2013 Feb; 5(4):1400-7. PubMed ID: 23360664
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Grafting of poly(acrylic acid) onto an aluminum surface.
    Barroso-Bujans F; Serna R; Sow E; Fierro JL; Veith M
    Langmuir; 2009 Aug; 25(16):9094-100. PubMed ID: 19591493
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Completely aqueous procedure for the growth of polymer brushes on polymeric substrates.
    Jain P; Dai J; Grajales S; Saha S; Baker GL; Bruening ML
    Langmuir; 2007 Nov; 23(23):11360-5. PubMed ID: 17918978
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adsorption of bovine hemoglobin onto spherical polyelectrolyte brushes monitored by small-angle X-ray scattering and Fourier transform infrared spectroscopy.
    Henzler K; Wittemann A; Breininger E; Ballauff M; Rosenfeldt S
    Biomacromolecules; 2007 Nov; 8(11):3674-81. PubMed ID: 17929973
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrokinetic characterization of poly(acrylic acid) and poly(ethylene oxide) brushes in aqueous electrolyte solutions.
    Zimmermann R; Norde W; Cohen Stuart MA; Werner C
    Langmuir; 2005 May; 21(11):5108-14. PubMed ID: 15896058
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface-grafted poly(acrylic acid) brushes as a precursor layer for biosensing applications: effect of graft density and swellability on the detection efficiency.
    Akkahat P; Mekboonsonglarp W; Kiatkamjornwong S; Hoven VP
    Langmuir; 2012 Mar; 28(11):5302-11. PubMed ID: 22329634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stimuli-responsive surfaces using polyampholyte polymer brushes prepared via atom transfer radical polymerization.
    Ayres N; Cyrus CD; Brittain WJ
    Langmuir; 2007 Mar; 23(7):3744-9. PubMed ID: 17319701
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Friction and normal interaction forces between irreversibly attached weakly charged polymer brushes.
    Liberelle B; Giasson S
    Langmuir; 2008 Feb; 24(4):1550-9. PubMed ID: 18225926
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrochemical and spectroscopic investigation of counterions exchange in polyelectrolyte brushes.
    Combellas C; Kanoufi F; Sanjuan S; Slim C; Tran Y
    Langmuir; 2009 May; 25(9):5360-70. PubMed ID: 19358586
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tailoring of poly(ether ether ketone) surface properties via surface-initiated atom transfer radical polymerization.
    Yameen B; Alvarez M; Azzaroni O; Jonas U; Knoll W
    Langmuir; 2009 Jun; 25(11):6214-20. PubMed ID: 19271778
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glucose monitoring using a polymer brush modified polypropylene hollow fiber-based hydraulic flow sensor.
    Fortin N; Klok HA
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4631-40. PubMed ID: 25675859
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hysteretic memory in pH-response of water contact angle on poly(acrylic acid) brushes.
    Yadav V; Harkin AV; Robertson ML; Conrad JC
    Soft Matter; 2016 Apr; 12(15):3589-99. PubMed ID: 26979270
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical characteristics of polyelectrolyte brushes with electroactive counterions.
    Choi EY; Azzaroni O; Cheng N; Zhou F; Kelby T; Huck WT
    Langmuir; 2007 Sep; 23(20):10389-94. PubMed ID: 17760471
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Construction of a comb-like glycosylated membrane surface by a combination of UV-induced graft polymerization and surface-initiated ATRP.
    Yang Q; Tian J; Hu MX; Xu ZK
    Langmuir; 2007 Jun; 23(12):6684-90. PubMed ID: 17497813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.