BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 19243184)

  • 1. Silver ion unusually stabilizes the structure of a parallel-motif DNA triplex.
    Ihara T; Ishii T; Araki N; Wilson AW; Jyo A
    J Am Chem Soc; 2009 Mar; 131(11):3826-7. PubMed ID: 19243184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of silver ion with CG.C+ base triplets in DNA triplex.
    Ihara T; Ishii T; Jyo A
    Nucleic Acids Symp Ser (Oxf); 2009; (53):19-20. PubMed ID: 19749239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes.
    Ono A; Cao S; Togashi H; Tashiro M; Fujimoto T; Machinami T; Oda S; Miyake Y; Okamoto I; Tanaka Y
    Chem Commun (Camb); 2008 Oct; (39):4825-7. PubMed ID: 18830506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex.
    Walter A; Schütz H; Simon H; Birch-Hirschfeld E
    J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The contribution of cytosine protonation to the stability of parallel DNA triple helices.
    Asensio JL; Lane AN; Dhesi J; Bergqvist S; Brown T
    J Mol Biol; 1998 Feb; 275(5):811-22. PubMed ID: 9480771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inability of RNA to form the i-motif: implications for triplex formation.
    Lacroix L; Mergny JL; Leroy JL; Hélène C
    Biochemistry; 1996 Jul; 35(26):8715-22. PubMed ID: 8679634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of cross-links to study the conformational dynamics of triplex DNA.
    Cain RJ; Glick GD
    Biochemistry; 1998 Feb; 37(5):1456-64. PubMed ID: 9477975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Base triplet nonisomorphism strongly influences DNA triplex conformation: effect of nonisomorphic G* GC and A* AT triplets and bending of DNA triplexes.
    Rathinavelan T; Yathindra N
    Biopolymers; 2006 Aug; 82(5):443-61. PubMed ID: 16493655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of intercalator binding on DNA triplex stability: correlation with effects on A-tract duplex structure.
    Sandström K; Wärmländer S; Bergman J; Engqvist R; Leijon M; Gräslund A
    J Mol Recognit; 2004; 17(4):277-85. PubMed ID: 15227636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triple helical structures involving inosine: there is a penalty for promiscuity.
    Mills M; Völker J; Klump HH
    Biochemistry; 1996 Oct; 35(41):13338-44. PubMed ID: 8873600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization of purine motif DNA triplex by a tetrapeptide from the binding domain of HMGBI protein.
    Jain A; Akanchha S; Rajeswari MR
    Biochimie; 2005 Aug; 87(8):781-90. PubMed ID: 15885869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and metal ion-binding of 4-N-substituted cytosine pairs in DNA duplexes.
    Sugiyama K; Kageyama Y; Okamoto I; Ono A
    Nucleic Acids Symp Ser (Oxf); 2007; (51):177-8. PubMed ID: 18029644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH-Independent triplex formation: hairpin DNA containing isoguanine or 9-deaza-9-propynylguanine in place of protonated cytosine.
    Seela F; Shaikh KI
    Org Biomol Chem; 2006 Nov; 4(21):3993-4004. PubMed ID: 17047881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Paper-clip" type triple helix formation by 5'-d-(TC)3Ta(CT)3Cb(AG)3 (a and b = 0-4) as a function of loop size with and without the pseudoisocytosine base in the Hoogsteen strand.
    Chin TM; Lin SB; Lee SY; Chang ML; Cheng AY; Chang FC; Pasternack L; Huang DH; Kan LS
    Biochemistry; 2000 Oct; 39(40):12457-64. PubMed ID: 11015227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of triplex forming oligodeoxynucleotides incorporating abasic sites by 5-arylcytosine residues in duplex DNAs.
    Mizuta M; Banba J; Kanamori T; Ohkubo A; Sekine M; Seio K
    Nucleic Acids Symp Ser (Oxf); 2007; (51):25-6. PubMed ID: 18029568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linkage of proton binding to the thermal dissociation of triple helix complex.
    Petraccone L; Erra E; Mattia CA; Fedullo V; Barone G; Giancola C
    Biophys Chem; 2004 Jul; 110(1-2):73-81. PubMed ID: 15223145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence-dependent stability of intramolecular DNA triple helices.
    Leitner D; Weisz K
    J Biomol Struct Dyn; 2000 Jun; 17(6):993-1000. PubMed ID: 10949166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hoogsteen-paired homopurine [RP-PS]-DNA and homopyrimidine RNA strands form a thermally stable parallel duplex.
    Guga P; Janicka M; Maciaszek A; Rebowska B; Nowak G
    Biophys J; 2007 Nov; 93(10):3567-74. PubMed ID: 17693472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A highly stabilizing silver(I)-mediated base pair in parallel-stranded DNA.
    Sinha I; Fonseca Guerra C; Müller J
    Angew Chem Int Ed Engl; 2015 Mar; 54(12):3603-6. PubMed ID: 25631645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A-tract DNA disfavours triplex formation.
    Sandström K; Wärmländer S; Gräslund A; Leijon M
    J Mol Biol; 2002 Jan; 315(4):737-48. PubMed ID: 11812143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.