BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 19243206)

  • 1. Relevance of biophysical interactions of nanoparticles with a model membrane in predicting cellular uptake: study with TAT peptide-conjugated nanoparticles.
    Peetla C; Rao KS; Labhasetwar V
    Mol Pharm; 2009; 6(5):1311-20. PubMed ID: 19243206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of molecular structure of cationic surfactants on biophysical interactions of surfactant-modified nanoparticles with a model membrane and cellular uptake.
    Peetla C; Labhasetwar V
    Langmuir; 2009 Feb; 25(4):2369-77. PubMed ID: 19161268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biophysical characterization of nanoparticle-endothelial model cell membrane interactions.
    Peetla C; Labhasetwar V
    Mol Pharm; 2008; 5(3):418-29. PubMed ID: 18271547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topical ocular delivery to laser-induced choroidal neovascularization by dual internalizing RGD and TAT peptide-modified nanoparticles.
    Chu Y; Chen N; Yu H; Mu H; He B; Hua H; Wang A; Sun K
    Int J Nanomedicine; 2017; 12():1353-1368. PubMed ID: 28260884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of poly(ethylene glycol) coating and monomer type on poly(alkyl cyanoacrylate) nanoparticle interactions with lipid monolayers and cells.
    Baghirov H; Melikishvili S; Mørch Y; Sulheim E; Åslund AKO; Hianik T; de Lange Davies C
    Colloids Surf B Biointerfaces; 2017 Feb; 150():373-383. PubMed ID: 27842930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanics and thermodynamics of nanoparticle interactions with plasma and endosomal membrane lipids in cellular uptake and endosomal escape.
    Peetla C; Jin S; Weimer J; Elegbede A; Labhasetwar V
    Langmuir; 2014 Jul; 30(25):7522-32. PubMed ID: 24911361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid)-polyethylene glycol nanoparticles improves ocular drug delivery.
    Vasconcelos A; Vega E; Pérez Y; Gómara MJ; García ML; Haro I
    Int J Nanomedicine; 2015; 10():609-31. PubMed ID: 25670897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficacy of Tat-conjugated ritonavir-loaded nanoparticles in reducing HIV-1 replication in monocyte-derived macrophages and cytocompatibility with macrophages and human neurons.
    Borgmann K; Rao KS; Labhasetwar V; Ghorpade A
    AIDS Res Hum Retroviruses; 2011 Aug; 27(8):853-62. PubMed ID: 21175357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of the force of nanoparticle-cell membrane interactions and its influence on intracellular trafficking of nanoparticles.
    Vasir JK; Labhasetwar V
    Biomaterials; 2008 Nov; 29(31):4244-52. PubMed ID: 18692238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biophysics of cell membrane lipids in cancer drug resistance: Implications for drug transport and drug delivery with nanoparticles.
    Peetla C; Vijayaraghavalu S; Labhasetwar V
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1686-98. PubMed ID: 24055719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamics of cell-penetrating HIV1 TAT peptide insertion into PC/PS/CHOL model bilayers through transmembrane pores: the roles of cholesterol and anionic lipids.
    Hu Y; Patel S
    Soft Matter; 2016 Aug; 12(32):6716-27. PubMed ID: 27435187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface presentation of functional peptides in solution determines cell internalization efficiency of TAT conjugated nanoparticles.
    Todorova N; Chiappini C; Mager M; Simona B; Patel II; Stevens MM; Yarovsky I
    Nano Lett; 2014 Sep; 14(9):5229-37. PubMed ID: 25157643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile Layer-by-Layer Self-Assembly toward Enantiomeric Poly(lactide) Stereocomplex Coated Magnetite Nanocarrier for Highly Tunable Drug Deliveries.
    Li Z; Yuan D; Jin G; Tan BH; He C
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1842-53. PubMed ID: 26717323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modified nanoparticles with cell-penetrating peptide and amphipathic chitosan derivative for enhanced oral colon absorption of insulin: preparation and evaluation.
    Guo F; Zhang M; Gao Y; Zhu S; Chen S; Liu W; Zhong H; Liu J
    Drug Deliv; 2016 Jul; 23(6):2003-14. PubMed ID: 26181840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Folate-decorated hybrid polymeric nanoparticles for chemically and physically combined paclitaxel loading and targeted delivery.
    Wang J; Liu W; Tu Q; Wang J; Song N; Zhang Y; Nie N; Wang J
    Biomacromolecules; 2011 Jan; 12(1):228-34. PubMed ID: 21158381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs.
    Rao KS; Reddy MK; Horning JL; Labhasetwar V
    Biomaterials; 2008 Nov; 29(33):4429-38. PubMed ID: 18760470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of cell penetrating peptide Tat with model membranes: a biophysical study.
    Dennison SR; Baker RD; Nicholl ID; Phoenix DA
    Biochem Biophys Res Commun; 2007 Nov; 363(1):178-82. PubMed ID: 17854767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholesterol-PEG comodified poly (N-butyl) cyanoacrylate nanoparticles for brain delivery: in vitro and in vivo evaluations.
    Hu X; Yang F; Liao Y; Li L; Zhang L
    Drug Deliv; 2017 Nov; 24(1):121-132. PubMed ID: 28156159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective biophysical interactions of surface modified nanoparticles with cancer cell lipids improve tumor targeting and gene therapy.
    Sharma B; Peetla C; Adjei IM; Labhasetwar V
    Cancer Lett; 2013 Jul; 334(2):228-36. PubMed ID: 23523612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.