These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 1924339)

  • 1. In vivo catalysis of a metabolically essential reaction by an antibody.
    Tang Y; Hicks JB; Hilvert D
    Proc Natl Acad Sci U S A; 1991 Oct; 88(19):8784-6. PubMed ID: 1924339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast expression of a catalytic antibody with chorismate mutase activity.
    Bowdish K; Tang Y; Hicks JB; Hilvert D
    J Biol Chem; 1991 Jun; 266(18):11901-8. PubMed ID: 2050687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of a high-energy substrate conformer in antibody catalysis.
    Campbell AP; Tarasow TM; Massefski W; Wright PE; Hilvert D
    Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8663-7. PubMed ID: 8378345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and expression in yeast of a higher plant chorismate mutase. Molecular cloning, sequencing of the cDNA and characterization of the Arabidopsis thaliana enzyme expressed in yeast.
    Eberhard J; Raesecke HR; Schmid J; Amrhein N
    FEBS Lett; 1993 Nov; 334(2):233-6. PubMed ID: 8224252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A glutamate residue in the catalytic center of the yeast chorismate mutase restricts enzyme activity to acidic conditions.
    Schnappauf G; Sträter N; Lipscomb WN; Braus GH
    Proc Natl Acad Sci U S A; 1997 Aug; 94(16):8491-6. PubMed ID: 9238004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Routes to catalysis: structure of a catalytic antibody and comparison with its natural counterpart.
    Haynes MR; Stura EA; Hilvert D; Wilson IA
    Science; 1994 Feb; 263(5147):646-52. PubMed ID: 8303271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Just a near attack conformer for catalysis (chorismate to prephenate rearrangements in water, antibody, enzymes, and their mutants).
    Hur S; Bruice TC
    J Am Chem Soc; 2003 Sep; 125(35):10540-2. PubMed ID: 12940735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the active site of chorismate mutase by combinatorial mutagenesis and selection: the importance of electrostatic catalysis.
    Kast P; Asif-Ullah M; Jiang N; Hilvert D
    Proc Natl Acad Sci U S A; 1996 May; 93(10):5043-8. PubMed ID: 8643526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monofunctional chorismate mutase from Bacillus subtilis: FTIR studies and the mechanism of action of the enzyme.
    Gray JV; Knowles JR
    Biochemistry; 1994 Aug; 33(33):9953-9. PubMed ID: 8061004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate conformational transitions in the active site of chorismate mutase: their role in the catalytic mechanism.
    Guo H; Cui Q; Lipscomb WN; Karplus M
    Proc Natl Acad Sci U S A; 2001 Jul; 98(16):9032-7. PubMed ID: 11481470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Location of the active site of allosteric chorismate mutase from Saccharomyces cerevisiae, and comments on the catalytic and regulatory mechanisms.
    Xue Y; Lipscomb WN
    Proc Natl Acad Sci U S A; 1995 Nov; 92(23):10595-8. PubMed ID: 7479847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple-steering QM-MM calculation of the free energy profile in chorismate mutase.
    Crespo A; Martí MA; Estrin DA; Roitberg AE
    J Am Chem Soc; 2005 May; 127(19):6940-1. PubMed ID: 15884923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic and biochemical identification of the chorismate mutase from Corynebacterium glutamicum.
    Li PP; Liu YJ; Liu SJ
    Microbiology (Reading); 2009 Oct; 155(Pt 10):3382-3391. PubMed ID: 19589834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chorismate mutase-catalyzed reaction of (+/-)-chorismic acid.
    Hoare JH; Berchtold GA
    Biochem Biophys Res Commun; 1982 May; 106(2):660-2. PubMed ID: 7049179
    [No Abstract]   [Full Text] [Related]  

  • 15. Comparison of formation of reactive conformers (NACs) for the Claisen rearrangement of chorismate to prephenate in water and in the E. coli mutase: the efficiency of the enzyme catalysis.
    Hur S; Bruice TC
    J Am Chem Soc; 2003 May; 125(19):5964-72. PubMed ID: 12733937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exhaustive mutagenesis of six secondary active-site residues in Escherichia coli chorismate mutase shows the importance of hydrophobic side chains and a helix N-capping position for stability and catalysis.
    Lassila JK; Keeffe JR; Kast P; Mayo SL
    Biochemistry; 2007 Jun; 46(23):6883-91. PubMed ID: 17506527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The near attack conformation approach to the study of the chorismate to prephenate reaction.
    Hur S; Bruice TC
    Proc Natl Acad Sci U S A; 2003 Oct; 100(21):12015-20. PubMed ID: 14523243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of site-directed mutagenesis to identify residues specific for each reaction catalyzed by chorismate mutase-prephenate dehydrogenase from Escherichia coli.
    Christendat D; Saridakis VC; Turnbull JL
    Biochemistry; 1998 Nov; 37(45):15703-12. PubMed ID: 9843375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the enzymatic mechanism of the yeast chorismate mutase by docking a transition state analog.
    Lin SL; Xu D; Li A; Rosen M; Wolfson HJ; Nussinov R
    J Mol Biol; 1997 Sep; 271(5):838-45. PubMed ID: 9299331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chorismate mutase-prephenate dehydrogenase from Aerobacter aerogenes: evidence that the two reactions occur at one active site.
    Heyde E
    Biochemistry; 1979 Jun; 18(13):2766-75. PubMed ID: 224902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.