BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 19243433)

  • 1. Cobalamin uptake and reactivation occurs through specific protein interactions in the methionine synthase-methionine synthase reductase complex.
    Wolthers KR; Scrutton NS
    FEBS J; 2009 Apr; 276(7):1942-51. PubMed ID: 19243433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein interactions in the human methionine synthase-methionine synthase reductase complex and implications for the mechanism of enzyme reactivation.
    Wolthers KR; Scrutton NS
    Biochemistry; 2007 Jun; 46(23):6696-709. PubMed ID: 17477549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron transfer in human methionine synthase reductase studied by stopped-flow spectrophotometry.
    Wolthers KR; Scrutton NS
    Biochemistry; 2004 Jan; 43(2):490-500. PubMed ID: 14717604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of coenzyme binding to human methionine synthase reductase revealed through the crystal structure of the FNR-like module and isothermal titration calorimetry.
    Wolthers KR; Lou X; Toogood HS; Leys D; Scrutton NS
    Biochemistry; 2007 Oct; 46(42):11833-44. PubMed ID: 17892308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impeded electron transfer from a pathogenic FMN domain mutant of methionine synthase reductase and its responsiveness to flavin supplementation.
    Gherasim CG; Zaman U; Raza A; Banerjee R
    Biochemistry; 2008 Nov; 47(47):12515-22. PubMed ID: 18980384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methionine synthase exists in two distinct conformations that differ in reactivity toward methyltetrahydrofolate, adenosylmethionine, and flavodoxin.
    Jarrett JT; Huang S; Matthews RG
    Biochemistry; 1998 Apr; 37(16):5372-82. PubMed ID: 9548919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in protonation associated with substrate binding and Cob(I)alamin formation in cobalamin-dependent methionine synthase.
    Jarrett JT; Choi CY; Matthews RG
    Biochemistry; 1997 Dec; 36(50):15739-48. PubMed ID: 9398303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human methionine synthase reductase, a soluble P-450 reductase-like dual flavoprotein, is sufficient for NADPH-dependent methionine synthase activation.
    Olteanu H; Banerjee R
    J Biol Chem; 2001 Sep; 276(38):35558-63. PubMed ID: 11466310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human methionine synthase reductase is a molecular chaperone for human methionine synthase.
    Yamada K; Gravel RA; Toraya T; Matthews RG
    Proc Natl Acad Sci U S A; 2006 Jun; 103(25):9476-81. PubMed ID: 16769880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human ATP:Cob(I)alamin adenosyltransferase and its interaction with methionine synthase reductase.
    Leal NA; Olteanu H; Banerjee R; Bobik TA
    J Biol Chem; 2004 Nov; 279(46):47536-42. PubMed ID: 15347655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of Escherichia coli cobalamin-dependent methionine synthase and its physiological partner flavodoxin: binding of flavodoxin leads to axial ligand dissociation from the cobalamin cofactor.
    Hoover DM; Jarrett JT; Sands RH; Dunham WR; Ludwig ML; Matthews RG
    Biochemistry; 1997 Jan; 36(1):127-38. PubMed ID: 8993326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cobalamin-dependent methionine synthase: probing the role of the axial base in catalysis of methyl transfer between methyltetrahydrofolate and exogenous cob(I)alamin or cob(I)inamide.
    Dorweiler JS; Finke RG; Matthews RG
    Biochemistry; 2003 Dec; 42(49):14653-62. PubMed ID: 14661978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand trans influence governs conformation in cobalamin-dependent methionine synthase.
    Fleischhacker AS; Matthews RG
    Biochemistry; 2007 Oct; 46(43):12382-92. PubMed ID: 17924667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tryptophan 697 modulates hydride and interflavin electron transfer in human methionine synthase reductase.
    Meints CE; Gustafsson FS; Scrutton NS; Wolthers KR
    Biochemistry; 2011 Dec; 50(51):11131-42. PubMed ID: 22097960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the role of the histidine 759 ligand in cobalamin-dependent methionine synthase.
    Liptak MD; Fleischhacker AS; Matthews RG; Brunold TC
    Biochemistry; 2007 Jul; 46(27):8024-35. PubMed ID: 17567043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of the C-terminal domain of methionine synthase: presenting S-adenosylmethionine for reductive methylation of B12.
    Dixon MM; Huang S; Matthews RG; Ludwig M
    Structure; 1996 Nov; 4(11):1263-75. PubMed ID: 8939751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dissection of human methionine synthase reductase: determination of the flavin redox potentials in full-length enzyme and isolated flavin-binding domains.
    Wolthers KR; Basran J; Munro AW; Scrutton NS
    Biochemistry; 2003 Apr; 42(13):3911-20. PubMed ID: 12667082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of Cob(III)alamin to Cob(II)alamin in Salmonella enterica serovar typhimurium LT2.
    Fonseca MV; Escalante-Semerena JC
    J Bacteriol; 2000 Aug; 182(15):4304-9. PubMed ID: 10894741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of adenosylmethionine-dependent activation of methionine synthase: a rapid kinetic analysis of intermediates in reductive methylation of Cob(II)alamin enzyme.
    Jarrett JT; Hoover DM; Ludwig ML; Matthews RG
    Biochemistry; 1998 Sep; 37(36):12649-58. PubMed ID: 9730838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrous oxide inactivation of cobalamin-dependent methionine synthase from Escherichia coli: characterization of the damage to the enzyme and prosthetic group.
    Drummond JT; Matthews RG
    Biochemistry; 1994 Mar; 33(12):3742-50. PubMed ID: 8142374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.