BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 19243441)

  • 21. Conversion of 7-ketolithocholic acid to ursodeoxycholic acid by human intestinal anaerobic microorganisms: interchangeability of chenodeoxycholic acid and ursodeoxycholic acid.
    Higashi S; Setoguchi T; Katsuki T
    Gastroenterol Jpn; 1979 Oct; 14(5):417-24. PubMed ID: 520764
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation and identification of equol-producing bacterial strains from cultures of pig faeces.
    Yu ZT; Yao W; Zhu WY
    FEMS Microbiol Lett; 2008 May; 282(1):73-80. PubMed ID: 18328079
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relation of serum cholesterol to in vitro 7alpha-dehydroxylation of primary bile acids by fecal bacteria in infants and children.
    Samuel P; Schussheim A; Lieberman S; Don EC
    Pediatrics; 1974 Aug; 54(2):222-8. PubMed ID: 4847858
    [No Abstract]   [Full Text] [Related]  

  • 24. Epimerization of chenodeoxycholic acid to ursodeoxycholic acid by Clostridium baratii isolated from human feces.
    Lepercq P; Gérard P; Béguet F; Raibaud P; Grill JP; Relano P; Cayuela C; Juste C
    FEMS Microbiol Lett; 2004 Jun; 235(1):65-72. PubMed ID: 15158263
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of fibre on bile acid metabolism by human faecal bacteria in batch and continuous culture.
    Fadden K; Hill MJ; Owen RW
    Eur J Cancer Prev; 1997 Apr; 6(2):175-94. PubMed ID: 9237069
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pattern extraction of structural responses of gut microbiota to rotavirus infection via multivariate statistical analysis of clone library data.
    Zhang M; Zhang M; Zhang C; Du H; Wei G; Pang X; Zhou H; Liu B; Zhao L
    FEMS Microbiol Ecol; 2009 Nov; 70(2):21-9. PubMed ID: 19453743
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Convergent temporal dynamics of the human infant gut microbiota.
    Trosvik P; Stenseth NC; Rudi K
    ISME J; 2010 Feb; 4(2):151-8. PubMed ID: 19710708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel ecological niche of Cetobacterium somerae, an anaerobic bacterium in the intestinal tracts of freshwater fish.
    Tsuchiya C; Sakata T; Sugita H
    Lett Appl Microbiol; 2008 Jan; 46(1):43-8. PubMed ID: 17944860
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Re-assessment of phenotypic identifications of Bacteroides putredinis to Alistipes species using molecular methods.
    Tyrrell KL; Warren YA; Citron DM; Goldstein EJ
    Anaerobe; 2011 Jun; 17(3):130-4. PubMed ID: 21527349
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The enzymic and chemical synthesis of ursodeoxycholic and chenodeoxycholic acid from cholic acid.
    Sutherland JD; Macdonald IA; Forrest TP
    Prep Biochem; 1982; 12(4):307-21. PubMed ID: 6961394
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NAD- and NADP-dependent 7alpha-hydroxysteroid dehydrogenases from bacteroides fragilis.
    Macdonald IA; Williams CN; Mahony DE; Christie WM
    Biochim Biophys Acta; 1975 Mar; 384(1):12-24. PubMed ID: 236764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microbial bile acid transformation.
    Midtvedt T
    Am J Clin Nutr; 1974 Nov; 27(11):1341-7. PubMed ID: 4217103
    [No Abstract]   [Full Text] [Related]  

  • 33. The effect of bile acids on intestinal microflora.
    Floch MH; Binder HJ; Filburn B; Gershengoren W
    Am J Clin Nutr; 1972 Dec; 25(12):1418-26. PubMed ID: 4344803
    [No Abstract]   [Full Text] [Related]  

  • 34. Bile acid transformation by the intestinal flora and cholesterol saturation in bile. Effects of Streptococcus faecium administration.
    Salvioli G; Salati R; Bondi M; Fratalocchi A; Sala BM; Gibertini A
    Digestion; 1982; 23(2):80-8. PubMed ID: 7095315
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of bile acid oxazoline derivatives on microorganisms participating in 7 alpha-hydroxyl epimerization of primary bile acids.
    Macdonald IA; Sutherland JD; Cohen BI; Mosbach EH
    J Lipid Res; 1983 Dec; 24(12):1550-9. PubMed ID: 6366102
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mesorhizobium australicum sp. nov. and Mesorhizobium opportunistum sp. nov., isolated from Biserrula pelecinus L. in Australia.
    Nandasena KG; O'Hara GW; Tiwari RP; Willems A; Howieson JG
    Int J Syst Evol Microbiol; 2009 Sep; 59(Pt 9):2140-7. PubMed ID: 19605705
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formation of ursodeoxycholic acid from chenodeoxycholic acid in the human colon: studies of the role of 7-ketolithocholic acid as an intermediate.
    Fromm H; Sarva RP; Bazzoli F
    J Lipid Res; 1983 Jul; 24(7):841-53. PubMed ID: 6631218
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Epimerization of chenodeoxycholic acid to ursodeoxycholic acid by human intestinal lecithinase-lipase-negative Clostridia.
    Edenharder R; Knaflic T
    J Lipid Res; 1981 May; 22(4):652-8. PubMed ID: 7276738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacteroides sp. strain D8, the first cholesterol-reducing bacterium isolated from human feces.
    Gérard P; Lepercq P; Leclerc M; Gavini F; Raibaud P; Juste C
    Appl Environ Microbiol; 2007 Sep; 73(18):5742-9. PubMed ID: 17616613
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiplex quantification of 16S rDNA of predominant bacteria group within human fecal samples by polymerase chain reaction--ligase detection reaction (PCR-LDR).
    Li K; Chen B; Zhou Y; Huang R; Liang Y; Wang Q; Xiao Z; Xiao J
    J Microbiol Methods; 2009 Mar; 76(3):289-94. PubMed ID: 19162093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.