These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 1924368)

  • 1. RNase-like domain in DNA-directed RNA polymerase II.
    Shirai T; Go M
    Proc Natl Acad Sci U S A; 1991 Oct; 88(20):9056-60. PubMed ID: 1924368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutational analysis of the RNase-like domain in subunit 2 of fission yeast RNA polymerase II.
    Kawagishi-Kobayashi M; Yamamoto M; Ishihama A
    Mol Gen Genet; 1996 Jan; 250(1):1-6. PubMed ID: 8569679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutamic acid-371 of the barnase homology domain in RNA polymerase II is not required for SII-activated RNA cleavage.
    Powell W; Lennon JC; Elsevier JP; Reines D
    Mol Gen Genet; 1997 Jan; 253(4):507-11. PubMed ID: 9037112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a nucleic acid-binding region within the largest subunit of Drosophila melanogaster RNA polymerase II.
    Kontermann RE; Kobor M; Bautz EK
    Protein Sci; 1993 Feb; 2(2):223-30. PubMed ID: 8443600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The proofreading domain of Escherichia coli DNA polymerase I and other DNA and/or RNA exonuclease domains.
    Moser MJ; Holley WR; Chatterjee A; Mian IS
    Nucleic Acids Res; 1997 Dec; 25(24):5110-8. PubMed ID: 9396823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the gene encoding the largest subunit of RNA polymerase II in Drosophila.
    Jokerst RS; Weeks JR; Zehring WA; Greenleaf AL
    Mol Gen Genet; 1989 Jan; 215(2):266-75. PubMed ID: 2496296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prokaryotic and eukaryotic RNA polymerases have homologous core subunits.
    Sweetser D; Nonet M; Young RA
    Proc Natl Acad Sci U S A; 1987 Mar; 84(5):1192-6. PubMed ID: 3547406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The non-RNase H domain of Saccharomyces cerevisiae RNase H1 binds double-stranded RNA: magnesium modulates the switch between double-stranded RNA binding and RNase H activity.
    Cerritelli SM; Crouch RJ
    RNA; 1995 May; 1(3):246-59. PubMed ID: 7489497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular modeling of RNA polymerase II mutations onto DNA polymerase I.
    Kim WJ; Burke LP; Mortin MA
    J Mol Biol; 1994 Nov; 244(1):13-22. PubMed ID: 7966318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA polymerases B and C are more closely related to each other than to RNA polymerase A.
    Mémet S; Saurin W; Sentenac A
    J Biol Chem; 1988 Jul; 263(21):10048-51. PubMed ID: 3292520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNS2: a senescence-associated RNase of Arabidopsis that diverged from the S-RNases before speciation.
    Taylor CB; Bariola PA; delCardayré SB; Raines RT; Green PJ
    Proc Natl Acad Sci U S A; 1993 Jun; 90(11):5118-22. PubMed ID: 8506358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The C-terminal domain of the largest subunit of RNA polymerase II of Saccharomyces cerevisiae, Drosophila melanogaster, and mammals: a conserved structure with an essential function.
    Allison LA; Wong JK; Fitzpatrick VD; Moyle M; Ingles CJ
    Mol Cell Biol; 1988 Jan; 8(1):321-9. PubMed ID: 3122024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping the active site of yeast RNA polymerase B (II).
    Riva M; Carles C; Sentenac A; Grachev MA; Mustaev AA; Zaychikov EF
    J Biol Chem; 1990 Sep; 265(27):16498-503. PubMed ID: 2204624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphate regulation of biosynthesis of extracellular RNases of endospore-forming bacteria.
    Znamenskaya LV; Gabdrakhmanova LA; Chernokalskaya EB; Leshchinskaya IB; Hartley RW
    FEBS Lett; 1995 Jan; 357(1):16-8. PubMed ID: 8001670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA polymerase II of Drosophila. Relation of its 140,000 Mr subunit to the beta subunit of Escherichia coli RNA polymerase.
    Falkenburg D; Dworniczak B; Faust DM; Bautz EK
    J Mol Biol; 1987 Jun; 195(4):929-37. PubMed ID: 3116266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribonuclease H: the enzymes in eukaryotes.
    Cerritelli SM; Crouch RJ
    FEBS J; 2009 Mar; 276(6):1494-505. PubMed ID: 19228196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure and structure-based mutational analyses of RNase HIII from Bacillus stearothermophilus: a new type 2 RNase H with TBP-like substrate-binding domain at the N terminus.
    Chon H; Matsumura H; Koga Y; Takano K; Kanaya S
    J Mol Biol; 2006 Feb; 356(1):165-78. PubMed ID: 16343535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An irregular beta-bulge common to a group of bacterial RNases is an important determinant of stability and function in barnase.
    Axe DD; Foster NW; Fersht AR
    J Mol Biol; 1999 Mar; 286(5):1471-85. PubMed ID: 10064710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations in a conserved region of RNA polymerase II influence the accuracy of mRNA start site selection.
    Hekmatpanah DS; Young RA
    Mol Cell Biol; 1991 Nov; 11(11):5781-91. PubMed ID: 1922077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Footprinting analysis of interactions between the largest eukaryotic RNase P/MRP protein Pop1 and RNase P/MRP RNA components.
    Fagerlund RD; Perederina A; Berezin I; Krasilnikov AS
    RNA; 2015 Sep; 21(9):1591-605. PubMed ID: 26135751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.