These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 1924373)
1. The Bacillus subtilis sigL gene encodes an equivalent of sigma 54 from gram-negative bacteria. Débarbouillé M; Martin-Verstraete I; Kunst F; Rapoport G Proc Natl Acad Sci U S A; 1991 Oct; 88(20):9092-6. PubMed ID: 1924373 [TBL] [Abstract][Full Text] [Related]
2. The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both sigma 54- and phosphotransferase system-dependent regulators. Débarbouillé M; Martin-Verstraete I; Klier A; Rapoport G Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2212-6. PubMed ID: 1900939 [TBL] [Abstract][Full Text] [Related]
3. Mutagenesis of the Bacillus subtilis "-12, -24" promoter of the levanase operon and evidence for the existence of an upstream activating sequence. Martin-Verstraete I; Débarbouillé M; Klier A; Rapoport G J Mol Biol; 1992 Jul; 226(1):85-99. PubMed ID: 1619665 [TBL] [Abstract][Full Text] [Related]
4. RocR, a novel regulatory protein controlling arginine utilization in Bacillus subtilis, belongs to the NtrC/NifA family of transcriptional activators. Calogero S; Gardan R; Glaser P; Schweizer J; Rapoport G; Debarbouille M J Bacteriol; 1994 Mar; 176(5):1234-41. PubMed ID: 8113162 [TBL] [Abstract][Full Text] [Related]
5. Role of bkdR, a transcriptional activator of the sigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis. Debarbouille M; Gardan R; Arnaud M; Rapoport G J Bacteriol; 1999 Apr; 181(7):2059-66. PubMed ID: 10094682 [TBL] [Abstract][Full Text] [Related]
6. The HPr protein of the phosphotransferase system links induction and catabolite repression of the Bacillus subtilis levanase operon. Stülke J; Martin-Verstraete I; Charrier V; Klier A; Deutscher J; Rapoport G J Bacteriol; 1995 Dec; 177(23):6928-36. PubMed ID: 7592487 [TBL] [Abstract][Full Text] [Related]
7. Expression of the rocDEF operon involved in arginine catabolism in Bacillus subtilis. Gardan R; Rapoport G; Débarbouillé M J Mol Biol; 1995 Jun; 249(5):843-56. PubMed ID: 7540694 [TBL] [Abstract][Full Text] [Related]
8. Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor sigma B in response to environmental signals. Wise AA; Price CW J Bacteriol; 1995 Jan; 177(1):123-33. PubMed ID: 8002610 [TBL] [Abstract][Full Text] [Related]
9. Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon. Martin-Verstraete I; Stülke J; Klier A; Rapoport G J Bacteriol; 1995 Dec; 177(23):6919-27. PubMed ID: 7592486 [TBL] [Abstract][Full Text] [Related]
10. An operon of Bacillus subtilis motility genes transcribed by the sigma D form of RNA polymerase. Mirel DB; Lustre VM; Chamberlin MJ J Bacteriol; 1992 Jul; 174(13):4197-204. PubMed ID: 1624413 [TBL] [Abstract][Full Text] [Related]
11. Molecular cloning and characterization of two genes encoding sigma factors that direct transcription from a Bacillus thuringiensis crystal protein gene promoter. Adams LF; Brown KL; Whiteley HR J Bacteriol; 1991 Jun; 173(12):3846-54. PubMed ID: 1904859 [TBL] [Abstract][Full Text] [Related]
12. Expression of the Bacillus subtilis levanase gene in Escherichia coli and Saccharomyces cerevisiae. Wanker E; Schörgendorfer K; Schwab H J Biotechnol; 1991 May; 18(3):243-54. PubMed ID: 1367531 [TBL] [Abstract][Full Text] [Related]
13. Interactions of wild-type and truncated LevR of Bacillus subtilis with the upstream activating sequence of the levanase operon. Martin-Verstraete I; Débarbouillé M; Klier A; Rapoport G J Mol Biol; 1994 Aug; 241(2):178-92. PubMed ID: 8057358 [TBL] [Abstract][Full Text] [Related]
14. The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators. Debarbouille M; Arnaud M; Fouet A; Klier A; Rapoport G J Bacteriol; 1990 Jul; 172(7):3966-73. PubMed ID: 2163394 [TBL] [Abstract][Full Text] [Related]
15. Regulation of the acetoin catabolic pathway is controlled by sigma L in Bacillus subtilis. Ali NO; Bignon J; Rapoport G; Debarbouille M J Bacteriol; 2001 Apr; 183(8):2497-504. PubMed ID: 11274109 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the operon encoding the alternative sigma(B) factor from Bacillus anthracis and its role in virulence. Fouet A; Namy O; Lambert G J Bacteriol; 2000 Sep; 182(18):5036-45. PubMed ID: 10960085 [TBL] [Abstract][Full Text] [Related]
17. Genetic method to identify regulons controlled by nonessential elements: isolation of a gene dependent on alternate transcription factor sigma B of Bacillus subtilis. Boylan SA; Thomas MD; Price CW J Bacteriol; 1991 Dec; 173(24):7856-66. PubMed ID: 1744042 [TBL] [Abstract][Full Text] [Related]
18. Activation of Bacillus subtilis transcription factor sigma B by a regulatory pathway responsive to stationary-phase signals. Boylan SA; Rutherford A; Thomas SM; Price CW J Bacteriol; 1992 Jun; 174(11):3695-706. PubMed ID: 1592822 [TBL] [Abstract][Full Text] [Related]
19. Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. Martin-Verstraete I; Débarbouillé M; Klier A; Rapoport G J Mol Biol; 1990 Aug; 214(3):657-71. PubMed ID: 2117666 [TBL] [Abstract][Full Text] [Related]
20. Developmental expression of three proteins from the first gene of the RNA polymerase sigma 43 operon of Bacillus subtilis. Wang LF; Doi RH J Bacteriol; 1987 Sep; 169(9):4190-5. PubMed ID: 3040682 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]