These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 19243780)

  • 1. Microdamage evaluation in human trabecular bone based on nonlinear ultrasound vibro-modulation (NUVM).
    Zacharias K; Balabanidou E; Hatzokos I; Rekanos IT; Trochidis A
    J Biomech; 2009 Mar; 42(5):581-6. PubMed ID: 19243780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non destructive characterization of cortical bone micro-damage by nonlinear resonant ultrasound spectroscopy.
    Haupert S; Guérard S; Peyrin F; Mitton D; Laugier P
    PLoS One; 2014; 9(1):e83599. PubMed ID: 24392089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear resonant ultrasound spectroscopy (NRUS) applied to damage assessment in bone.
    Muller M; Sutin A; Guyer R; Talmant M; Laugier P; Johnson PA
    J Acoust Soc Am; 2005 Dec; 118(6):3946-52. PubMed ID: 16419838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear ultrasound can detect accumulated damage in human bone.
    Muller M; Mitton D; Talmant M; Johnson P; Laugier P
    J Biomech; 2008; 41(5):1062-8. PubMed ID: 18222458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-accuracy acoustic detection of nonclassical component of material nonlinearity.
    Haupert S; Renaud G; Rivière J; Talmant M; Johnson PA; Laugier P
    J Acoust Soc Am; 2011 Nov; 130(5):2654-61. PubMed ID: 22087892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring trabecular bone microdamage using a dynamic acousto-elastic testing method.
    Moreschi H; Callé S; Guerard S; Mitton D; Renaud G; Defontaine M
    Proc Inst Mech Eng H; 2011 Mar; 225(3):282-95. PubMed ID: 21485329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone micro-damage assessment using non-linear resonant ultrasound spectroscopy (NRUS) techniques: a feasibility study.
    Muller M; Tencate JA; Darling TW; Sutin A; Guyer RA; Talmant M; Laugier P; Johnson PA
    Ultrasonics; 2006 Dec; 44 Suppl 1():e245-9. PubMed ID: 16876843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of damage to trabecular bone of the osteoporotic human acetabulum at small strains using nonlinear micro-finite element analyses.
    Ding H; Zhu ZA; Dai KR
    Chin Med J (Engl); 2009 Sep; 122(17):2041-7. PubMed ID: 19781393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear frequency mixing in a resonant cavity: numerical simulations in a bubbly liquid.
    Vanhille C; Campos-Pozuelo C; Sinha DN
    Ultrasonics; 2014 Dec; 54(8):2051-4. PubMed ID: 25064635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-mode nonlinear resonance ultrasound spectroscopy for defect imaging: an analytical approach for the one-dimensional case.
    Van Den Abeele K
    J Acoust Soc Am; 2007 Jul; 122(1):73-90. PubMed ID: 17614466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploration of trabecular bone nonlinear elasticity using time-of-flight modulation.
    Renaud G; Calle S; Remenieras JP; Defontaine M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1497-507. PubMed ID: 18986939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue.
    Kosmopoulos V; Schizas C; Keller TS
    J Biomech; 2008; 41(3):515-22. PubMed ID: 18076887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low- and high-frequency nonlinear acoustic phenomena in a magnesite.
    Nazarov VE; Kolpakov AB
    Ultrasonics; 2014 Feb; 54(2):471-8. PubMed ID: 24035610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting trabecular bone microdamage initiation and accumulation using a non-linear perfect damage model.
    Kosmopoulos V; Keller TS
    Med Eng Phys; 2008 Jul; 30(6):725-32. PubMed ID: 17881275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of fiber orientation on the inherent acoustic nonlinearity in carbon fiber reinforced composites.
    Chakrapani SK; Barnard DJ; Dayal V
    J Acoust Soc Am; 2015 Feb; 137(2):617-24. PubMed ID: 25697996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic emission based monitoring of the microdamage evolution during fatigue of human cortical bone.
    Agcaoglu S; Akkus O
    J Biomech Eng; 2013 Aug; 135(8):81005. PubMed ID: 23760184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of nonlinear elasticity for the evaluation of submillimeter crack length in cortical bone.
    Haupert S; Guérard S; Mitton D; Peyrin F; Laugier P
    J Mech Behav Biomed Mater; 2015 Aug; 48():210-219. PubMed ID: 25955563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Study of Localized Crack-Induced Effects of Nonlinear Vibro-Acoustic Modulation.
    Broda D; Mendrok K; Silberschmidt VV; Pieczonka L; Staszewski WJ
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of material nonlinearity in relation to microdamage density using nonlinear reverberation spectroscopy: Experimental and theoretical study.
    Van Den Abeele K; Le Bas PY; Van Damme B; Katkowski T
    J Acoust Soc Am; 2009 Sep; 126(3):963-72. PubMed ID: 19739709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive value of femoral head heterogeneity for fracture risk.
    Tanck E; Bakker AD; Kregting S; Cornelissen B; Klein-Nulend J; Van Rietbergen B
    Bone; 2009 Apr; 44(4):590-5. PubMed ID: 19162254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.