BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 19243909)

  • 1. Diversity of frankiae in root nodules of Morella pensylvanica grown in soils from five continents.
    Welsh A; Mirza BS; Rieder JP; Paschke MW; Hahn D
    Syst Appl Microbiol; 2009 May; 32(3):201-10. PubMed ID: 19243909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversity of frankiae in soils from five continents.
    Mirza BS; Welsh A; Rieder JP; Paschke MW; Hahn D
    Syst Appl Microbiol; 2009 Dec; 32(8):558-70. PubMed ID: 19692194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular diversity of Frankia in root nodules of Alnus incana grown with inoculum from polluted urban soils.
    Ridgway KP; Marland LA; Harrison AF; Wright J; Young JP; Fitter AH
    FEMS Microbiol Ecol; 2004 Nov; 50(3):255-63. PubMed ID: 19712365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variation in Frankia populations of the Elaeagnus host infection group in nodules of six host plant species after inoculation with soil.
    Mirza BS; Welsh A; Rasul G; Rieder JP; Paschke MW; Hahn D
    Microb Ecol; 2009 Aug; 58(2):384-93. PubMed ID: 19330550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frankia Diversity in Host Plant Root Nodules Is Independent of Abundance or Relative Diversity of Frankia Populations in Corresponding Rhizosphere Soils.
    Ben Tekaya S; Guerra T; Rodriguez D; Dawson JO; Hahn D
    Appl Environ Microbiol; 2018 Mar; 84(5):. PubMed ID: 29247058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frankia populations in soil and root nodules of sympatrically grown Alnus taxa.
    Pokharel A; Mirza BS; Dawson JO; Hahn D
    Microb Ecol; 2011 Jan; 61(1):92-100. PubMed ID: 20838787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sybr Green- and TaqMan-Based Quantitative PCR Approaches Allow Assessment of the Abundance and Relative Distribution of Frankia Clusters in Soils.
    Ben Tekaya S; Ganesan AS; Guerra T; Dawson JO; Forstner MRJ; Hahn D
    Appl Environ Microbiol; 2017 Mar; 83(5):. PubMed ID: 27986724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of Frankia strains in leaf litter-amended soil and the rhizosphere of a nonactinorhizal plant.
    Mirza BS; Welsh A; Hahn D
    FEMS Microbiol Ecol; 2009 Oct; 70(1):132-41. PubMed ID: 19678845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of different Alnus taxa on abundance and diversity of introduced and indigenous Frankia in soils and root nodules.
    Vemulapally S; Guerra T; Hahn D
    FEMS Microbiol Ecol; 2022 Mar; 98(3):. PubMed ID: 35170731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the 23S rRNA gene as target for qPCR based quantification of Frankia in soils.
    Samant S; Amann RI; Hahn D
    Syst Appl Microbiol; 2014 May; 37(3):229-34. PubMed ID: 24315016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity of Frankia strains associated to Myrica gale in Western Europe: impact of host plant (Myrica vs. Alnus) and of edaphic factors.
    Huguet V; Mergeay M; Cervantes E; Fernandez MP
    Environ Microbiol; 2004 Oct; 6(10):1032-41. PubMed ID: 15344928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity of Frankia in soil assessed by Illumina sequencing of nifH gene fragments.
    Rodriguez D; Guerra TM; Forstner MR; Hahn D
    Syst Appl Microbiol; 2016 Sep; 39(6):391-7. PubMed ID: 27485903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversity of Frankia populations in root nodules of geographically isolated Arizona alder trees in central Arizona (United States).
    Welsh AK; Dawson JO; Gottfried GJ; Hahn D
    Appl Environ Microbiol; 2009 Nov; 75(21):6913-8. PubMed ID: 19734342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of Elaeagnus-compatible Frankia from soils collected in Tunisia.
    Gtari M; Brusetti L; Skander G; Mora D; Boudabous A; Daffonchio D
    FEMS Microbiol Lett; 2004 May; 234(2):349-55. PubMed ID: 15135543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low genetic diversity among Frankia spp. strains nodulating sympatric populations of actinorhizal species of Rosaceae, Ceanothus (Rhamnaceae) and Datisca glomerata (Datiscaceae) west of the Sierra Nevada (California).
    Vanden Heuvel BD; Benson DR; Bortiri E; Potter D
    Can J Microbiol; 2004 Dec; 50(12):989-1000. PubMed ID: 15714229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abundance and Relative Distribution of Frankia Host Infection Groups Under Actinorhizal Alnus glutinosa and Non-actinorhizal Betula nigra Trees.
    Samant S; Huo T; Dawson JO; Hahn D
    Microb Ecol; 2016 Feb; 71(2):473-81. PubMed ID: 26143359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular phylogeny of Myricaceae: a reexamination of host-symbiont specificity.
    Huguet V; Gouy M; Normand P; Zimpfer JF; Fernandez MP
    Mol Phylogenet Evol; 2005 Mar; 34(3):557-68. PubMed ID: 15683929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogeny and assemblage composition of Frankia in Alnus tenuifolia nodules across a primary successional sere in interior Alaska.
    Anderson MD; Taylor DL; Ruess RW
    Mol Ecol; 2013 Jul; 22(14):3864-77. PubMed ID: 23731390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of inoculation and leaf litter amendment on establishment of nodule-forming Frankia populations in soil.
    Nickel A; Pelz O; Hahn D; Saurer M; Siegwolf R; Zeyer J
    Appl Environ Microbiol; 2001 Jun; 67(6):2603-9. PubMed ID: 11375169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frankia and Alnus rubra canopy roots: an assessment of genetic diversity, propagule availability, and effects on soil nitrogen.
    Kennedy PG; Schouboe JL; Rogers RH; Weber MG; Nadkarni NM
    Microb Ecol; 2010 Feb; 59(2):214-20. PubMed ID: 19787390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.