These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 19243909)
1. Diversity of frankiae in root nodules of Morella pensylvanica grown in soils from five continents. Welsh A; Mirza BS; Rieder JP; Paschke MW; Hahn D Syst Appl Microbiol; 2009 May; 32(3):201-10. PubMed ID: 19243909 [TBL] [Abstract][Full Text] [Related]
2. Diversity of frankiae in soils from five continents. Mirza BS; Welsh A; Rieder JP; Paschke MW; Hahn D Syst Appl Microbiol; 2009 Dec; 32(8):558-70. PubMed ID: 19692194 [TBL] [Abstract][Full Text] [Related]
3. Molecular diversity of Frankia in root nodules of Alnus incana grown with inoculum from polluted urban soils. Ridgway KP; Marland LA; Harrison AF; Wright J; Young JP; Fitter AH FEMS Microbiol Ecol; 2004 Nov; 50(3):255-63. PubMed ID: 19712365 [TBL] [Abstract][Full Text] [Related]
4. Variation in Frankia populations of the Elaeagnus host infection group in nodules of six host plant species after inoculation with soil. Mirza BS; Welsh A; Rasul G; Rieder JP; Paschke MW; Hahn D Microb Ecol; 2009 Aug; 58(2):384-93. PubMed ID: 19330550 [TBL] [Abstract][Full Text] [Related]
5. Frankia Diversity in Host Plant Root Nodules Is Independent of Abundance or Relative Diversity of Frankia Populations in Corresponding Rhizosphere Soils. Ben Tekaya S; Guerra T; Rodriguez D; Dawson JO; Hahn D Appl Environ Microbiol; 2018 Mar; 84(5):. PubMed ID: 29247058 [TBL] [Abstract][Full Text] [Related]
6. Frankia populations in soil and root nodules of sympatrically grown Alnus taxa. Pokharel A; Mirza BS; Dawson JO; Hahn D Microb Ecol; 2011 Jan; 61(1):92-100. PubMed ID: 20838787 [TBL] [Abstract][Full Text] [Related]
7. Sybr Green- and TaqMan-Based Quantitative PCR Approaches Allow Assessment of the Abundance and Relative Distribution of Frankia Clusters in Soils. Ben Tekaya S; Ganesan AS; Guerra T; Dawson JO; Forstner MRJ; Hahn D Appl Environ Microbiol; 2017 Mar; 83(5):. PubMed ID: 27986724 [TBL] [Abstract][Full Text] [Related]
8. Growth of Frankia strains in leaf litter-amended soil and the rhizosphere of a nonactinorhizal plant. Mirza BS; Welsh A; Hahn D FEMS Microbiol Ecol; 2009 Oct; 70(1):132-41. PubMed ID: 19678845 [TBL] [Abstract][Full Text] [Related]
9. Effect of different Alnus taxa on abundance and diversity of introduced and indigenous Frankia in soils and root nodules. Vemulapally S; Guerra T; Hahn D FEMS Microbiol Ecol; 2022 Mar; 98(3):. PubMed ID: 35170731 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of the 23S rRNA gene as target for qPCR based quantification of Frankia in soils. Samant S; Amann RI; Hahn D Syst Appl Microbiol; 2014 May; 37(3):229-34. PubMed ID: 24315016 [TBL] [Abstract][Full Text] [Related]
11. Diversity of Frankia strains associated to Myrica gale in Western Europe: impact of host plant (Myrica vs. Alnus) and of edaphic factors. Huguet V; Mergeay M; Cervantes E; Fernandez MP Environ Microbiol; 2004 Oct; 6(10):1032-41. PubMed ID: 15344928 [TBL] [Abstract][Full Text] [Related]
12. Diversity of Frankia in soil assessed by Illumina sequencing of nifH gene fragments. Rodriguez D; Guerra TM; Forstner MR; Hahn D Syst Appl Microbiol; 2016 Sep; 39(6):391-7. PubMed ID: 27485903 [TBL] [Abstract][Full Text] [Related]
13. Diversity of Frankia populations in root nodules of geographically isolated Arizona alder trees in central Arizona (United States). Welsh AK; Dawson JO; Gottfried GJ; Hahn D Appl Environ Microbiol; 2009 Nov; 75(21):6913-8. PubMed ID: 19734342 [TBL] [Abstract][Full Text] [Related]
14. Isolation of Elaeagnus-compatible Frankia from soils collected in Tunisia. Gtari M; Brusetti L; Skander G; Mora D; Boudabous A; Daffonchio D FEMS Microbiol Lett; 2004 May; 234(2):349-55. PubMed ID: 15135543 [TBL] [Abstract][Full Text] [Related]
15. Low genetic diversity among Frankia spp. strains nodulating sympatric populations of actinorhizal species of Rosaceae, Ceanothus (Rhamnaceae) and Datisca glomerata (Datiscaceae) west of the Sierra Nevada (California). Vanden Heuvel BD; Benson DR; Bortiri E; Potter D Can J Microbiol; 2004 Dec; 50(12):989-1000. PubMed ID: 15714229 [TBL] [Abstract][Full Text] [Related]
16. Abundance and Relative Distribution of Frankia Host Infection Groups Under Actinorhizal Alnus glutinosa and Non-actinorhizal Betula nigra Trees. Samant S; Huo T; Dawson JO; Hahn D Microb Ecol; 2016 Feb; 71(2):473-81. PubMed ID: 26143359 [TBL] [Abstract][Full Text] [Related]
17. Molecular phylogeny of Myricaceae: a reexamination of host-symbiont specificity. Huguet V; Gouy M; Normand P; Zimpfer JF; Fernandez MP Mol Phylogenet Evol; 2005 Mar; 34(3):557-68. PubMed ID: 15683929 [TBL] [Abstract][Full Text] [Related]
18. Phylogeny and assemblage composition of Frankia in Alnus tenuifolia nodules across a primary successional sere in interior Alaska. Anderson MD; Taylor DL; Ruess RW Mol Ecol; 2013 Jul; 22(14):3864-77. PubMed ID: 23731390 [TBL] [Abstract][Full Text] [Related]
19. Effect of inoculation and leaf litter amendment on establishment of nodule-forming Frankia populations in soil. Nickel A; Pelz O; Hahn D; Saurer M; Siegwolf R; Zeyer J Appl Environ Microbiol; 2001 Jun; 67(6):2603-9. PubMed ID: 11375169 [TBL] [Abstract][Full Text] [Related]
20. Frankia and Alnus rubra canopy roots: an assessment of genetic diversity, propagule availability, and effects on soil nitrogen. Kennedy PG; Schouboe JL; Rogers RH; Weber MG; Nadkarni NM Microb Ecol; 2010 Feb; 59(2):214-20. PubMed ID: 19787390 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]