BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 19244005)

  • 1. Region segmentation in the frequency domain applied to upper airway real-time magnetic resonance images.
    Bresch E; Narayanan S
    IEEE Trans Med Imaging; 2009 Mar; 28(3):323-38. PubMed ID: 19244005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of vocal tract shape and dimensions using magnetic resonance imaging: vowels.
    Baer T; Gore JC; Gracco LC; Nye PW
    J Acoust Soc Am; 1991 Aug; 90(2 Pt 1):799-828. PubMed ID: 1939886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Assessment with magnetic resonance of laryngeal and oropharyngeal movements during phonation].
    Di Girolamo M; Corsetti A; Laghi A; Ferone E; Iannicelli E; Rossi M; Pavone P; Passariello R
    Radiol Med; 1996; 92(1-2):33-40. PubMed ID: 8966270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The human instrument.
    Titze IR
    Sci Am; 2008 Jan; 298(1):94-101. PubMed ID: 18225701
    [No Abstract]   [Full Text] [Related]  

  • 5. Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002.
    Story BH
    J Acoust Soc Am; 2008 Jan; 123(1):327-35. PubMed ID: 18177162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-second MRI of a three-dimensional vocal tract to measure dynamic articulator modifications.
    Burdumy M; Traser L; Burk F; Richter B; Echternach M; Korvink JG; Hennig J; Zaitsev M
    J Magn Reson Imaging; 2017 Jul; 46(1):94-101. PubMed ID: 27943448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An open-source toolbox for measuring vocal tract shape from real-time magnetic resonance images.
    Belyk M; Carignan C; McGettigan C
    Behav Res Methods; 2024 Mar; 56(3):2623-2635. PubMed ID: 37507650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hominid evolution, supralaryngeal vocal tract physiology, and the fossil evidence for reconstructions.
    Lieberman P
    Brain Lang; 1979 Jan; 7(1):101-26. PubMed ID: 107997
    [No Abstract]   [Full Text] [Related]  

  • 9. Morphologic differences in the vocal tract resonance cavities of voice professionals: an MRI-based study.
    Rua Ventura SM; Freitas DR; Ramos IM; Tavares JM
    J Voice; 2013 Mar; 27(2):132-40. PubMed ID: 23406840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved vocal tract reconstruction and modeling using an image super-resolution technique.
    Zhou X; Woo J; Stone M; Prince JL; Espy-Wilson CY
    J Acoust Soc Am; 2013 Jun; 133(6):EL439-45. PubMed ID: 23742437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Fast Semiautomatic Algorithm for Centerline-Based Vocal Tract Segmentation.
    Poznyakovskiy AA; Mainka A; Platzek I; Mürbe D
    Biomed Res Int; 2015; 2015():906356. PubMed ID: 26557710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inter-speaker speech variability assessment using statistical deformable models from 3.0 tesla magnetic resonance images.
    Vasconcelos MJ; Ventura SM; Freitas DR; Tavares JM
    Proc Inst Mech Eng H; 2012 Mar; 226(3):185-96. PubMed ID: 22558833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MR imaging of the vocal tract during vowel production.
    Lakshminarayanan AV; Lee S; McCutcheon MJ
    J Magn Reson Imaging; 1991; 1(1):71-6. PubMed ID: 1802134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vocal tract area function estimation from midsagittal dimensions with CT scans and a vocal tract cast: modeling the transition with two sets of coefficients.
    Perrier P; Boë LJ; Sock R
    J Speech Hear Res; 1992 Feb; 35(1):53-67. PubMed ID: 1735977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of a curved vocal tract with grid-generated tongue profile on low-order formants.
    Milenkovic PH; Yaddanapudi S; Vorperian HK; Kent RD
    J Acoust Soc Am; 2010 Feb; 127(2):1002-13. PubMed ID: 20136222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of supine and upright position on vocal tract configurations during singing--a comparative study in professional tenors.
    Traser L; Burdumy M; Richter B; Vicari M; Echternach M
    J Voice; 2013 Mar; 27(2):141-8. PubMed ID: 23380394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep-learning-based segmentation of the vocal tract and articulators in real-time magnetic resonance images of speech.
    Ruthven M; Miquel ME; King AP
    Comput Methods Programs Biomed; 2021 Jan; 198():105814. PubMed ID: 33197740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Functionally determined area changes in the oro-pharyngo-laryngeal vocal tract of singers as shown by magnetic resonance tomography].
    Wein B; Neuschaefer-Rube C; Angerstein W; Klajman S; Günther RW
    Rofo; 1995 Feb; 162(2):99-103. PubMed ID: 7881093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fast and flexible MRI system for the study of dynamic vocal tract shaping.
    Lingala SG; Zhu Y; Kim YC; Toutios A; Narayanan S; Nayak KS
    Magn Reson Med; 2017 Jan; 77(1):112-125. PubMed ID: 26778178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The human vocal cords: a mathematical model. I.
    Titze IR
    Phonetica; 1973; 28(3):129-70. PubMed ID: 4788091
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.