BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 19244361)

  • 21. Effects of interfering RNA of α-1,3-galactosyltransferase and nuclear factor-kappa B on cardiac xenotransplantation.
    Cao JS; Qi F; Lu CY; Gu YC; Zhu LW
    Transpl Immunol; 2014 Sep; 31(3):173-82. PubMed ID: 25128705
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancement of RNA interference effect in P19 EC cells by an RNA-dependent RNA polymerase.
    Esmaeili F
    Iran Biomed J; 2009 Jan; 13(1):19-25. PubMed ID: 19252674
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expression of small hairpin RNA by lentivirus-based vector confers efficient and stable gene-suppression of HIV-1 on human cells including primary non-dividing cells.
    Nishitsuji H; Ikeda T; Miyoshi H; Ohashi T; Kannagi M; Masuda T
    Microbes Infect; 2004 Jan; 6(1):76-85. PubMed ID: 14738896
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of a multipurpose GATEWAY-based lentiviral tetracycline-regulated conditional RNAi system (GLTR).
    Sigl R; Ploner C; Shivalingaiah G; Kofler R; Geley S
    PLoS One; 2014; 9(5):e97764. PubMed ID: 24841113
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The RIG-I-like receptor LGP2 inhibits Dicer-dependent processing of long double-stranded RNA and blocks RNA interference in mammalian cells.
    van der Veen AG; Maillard PV; Schmidt JM; Lee SA; Deddouche-Grass S; Borg A; Kjær S; Snijders AP; Reis e Sousa C
    EMBO J; 2018 Feb; 37(4):. PubMed ID: 29351913
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasmid-based shRNA lentiviral particle production for RNAi applications.
    Shum D; Djaballah H
    J Biomol Screen; 2014 Oct; 19(9):1309-13. PubMed ID: 24939963
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RNAi expression vectors in mammalian cells.
    Miyagishi M; Taira K
    Methods Mol Biol; 2004; 252():483-91. PubMed ID: 15017073
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lentiviral delivery of RNAi in hippocampal neurons.
    Janas J; Skowronski J; Van Aelst L
    Methods Enzymol; 2006; 406():593-605. PubMed ID: 16472690
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development and application of siRNA expression vector.
    Miyagishi M; Taira K
    Nucleic Acids Res Suppl; 2002; (2):113-4. PubMed ID: 12903131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The RNA silencing technology applied by lentiviral vectors in oncology.
    Sumimoto H; Kawakami Y
    Methods Mol Biol; 2010; 614():187-99. PubMed ID: 20225045
    [TBL] [Abstract][Full Text] [Related]  

  • 31. HIV-1 RRE RNA acts as an RNA silencing suppressor by competing with TRBP-bound siRNAs.
    Daniels SM; Sinck L; Ward NJ; Melendez-Peña CE; Scarborough RJ; Azar I; Rance E; Daher A; Pang KM; Rossi JJ; Gatignol A
    RNA Biol; 2015; 12(2):123-35. PubMed ID: 25668122
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discovery and Use of Long dsRNA Mediated RNA Interference to Stimulate Antiviral Protection in Interferon Competent Mammalian Cells.
    Semple SL; Au SKW; Jacob RA; Mossman KL; DeWitte-Orr SJ
    Front Immunol; 2022; 13():859749. PubMed ID: 35603190
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transport of orally delivered dsRNA in southern green stink bug, Nezara viridula.
    Gurusamy D; Howell JL; Chereddy SCRR; Koo J; Palli SR
    Arch Insect Biochem Physiol; 2020 Aug; 104(4):e21692. PubMed ID: 32441400
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of gene expression by lentiviral-mediated delivery of small interfering RNA.
    Scherr M; Battmer K; Ganser A; Eder M
    Cell Cycle; 2003; 2(3):251-7. PubMed ID: 12734435
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Short-term cytotoxic effects and long-term instability of RNAi delivered using lentiviral vectors.
    Fish RJ; Kruithof EK
    BMC Mol Biol; 2004 Aug; 5():9. PubMed ID: 15291968
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Construction and identification of mouse eosinophils CCR3 gene RNA interference lentiviral vector].
    Zhu XH; Liao B; Wang XY; Liu K; Liu YH
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2013 Apr; 48(4):316-21. PubMed ID: 23886094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Approaches for chemically synthesized siRNA and vector-mediated RNAi.
    Amarzguioui M; Rossi JJ; Kim D
    FEBS Lett; 2005 Oct; 579(26):5974-81. PubMed ID: 16199038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Silencing of HIV-1 with RNA interference: a multiple shRNA approach.
    ter Brake O; Konstantinova P; Ceylan M; Berkhout B
    Mol Ther; 2006 Dec; 14(6):883-92. PubMed ID: 16959541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strand antagonism in RNAi: an explanation of differences in potency between intracellularly expressed siRNA and shRNA.
    Jin X; Sun T; Zhao C; Zheng Y; Zhang Y; Cai W; He Q; Taira K; Zhang L; Zhou D
    Nucleic Acids Res; 2012 Feb; 40(4):1797-806. PubMed ID: 22039150
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNA interference in mice.
    Kühn R; Streif S; Wurst W
    Handb Exp Pharmacol; 2007; (178):149-76. PubMed ID: 17203655
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.