These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 19244492)

  • 41. Soil photolysis in a moisture- and temperature-controlled environment. 2. Insecticides.
    Graebing P; Chib JS
    J Agric Food Chem; 2004 May; 52(9):2606-14. PubMed ID: 15113166
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biochar Amendment to the Soil Surface Reduces Fumigant Emissions and Enhances Soil Microorganism Recovery.
    Shen G; Ashworth DJ; Gan J; Yates SR
    Environ Sci Technol; 2016 Feb; 50(3):1182-9. PubMed ID: 26726779
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Vulnerability of tropical forest ecosystems and forest dependent communities to droughts.
    Vogt DJ; Vogt KA; Gmur SJ; Scullion JJ; Suntana AS; Daryanto S; Sigurðardóttir R
    Environ Res; 2016 Jan; 144(Pt B):27-38. PubMed ID: 26552634
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of surface emissions and subsurface distribution of cis- and trans-1,3-dichloropropene and chloropicrin in sandy field beds covered with four different plastic films.
    Ou LT; Thomas JE; Allen LH; Vu JC; Dickson DW
    J Environ Sci Health B; 2008 Jun; 43(5):376-81. PubMed ID: 18576217
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Construction of a reactive surface barrier to reduce fumigant 1,3-dichloropropene emissions.
    Zheng W; Papiernik SK; Guo M; Dungan RS; Yates SR
    Environ Toxicol Chem; 2005 Aug; 24(8):1867-74. PubMed ID: 16152955
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Long-term influence of tillage and fertilization on net carbon dioxide exchange rate on two soils with different textures.
    Feiziene D; Feiza V; Slepetiene A; Liaudanskiene I; Kadziene G; Deveikyte I; Vaideliene A
    J Environ Qual; 2011; 40(6):1787-96. PubMed ID: 22031561
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Laboratory assessment of emission reduction strategies for the agricultural fumigants 1,3-dichloropropene and chloropicrin.
    Ashworth DJ; Ernst FF; Xuan R; Yates SR
    Environ Sci Technol; 2009 Jul; 43(13):5073-8. PubMed ID: 19673309
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Competitive degradation between the fumigants chloropicrin and 1,3-dichloropropene in unamended and amended soils.
    Zheng W; Papiernik SK; Guo M; Yates SR
    J Environ Qual; 2003; 32(5):1735-42. PubMed ID: 14535315
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Atmospheric volatilization and distribution of (Z)- and (E)-1,3-dichloropropene in field beds with and without plastic covers.
    Thomas JE; Allen LH; McCormack LA; Vu JC; Dickson DW; Ou LT
    J Environ Sci Health B; 2004; 39(5-6):709-23. PubMed ID: 15620080
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Simulating the Effects of Different Textural Soils and N Management on Maize Yield, N Fates, and Water and N Use Efficiencies in Northeast China.
    Meng F; Hu K; Feng P; Feng G; Gao Q
    Plants (Basel); 2022 Dec; 11(23):. PubMed ID: 36501377
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of films on 1,3-dichloropropene and chloropicrin emission, soil concentration, and root-knot nematode control in a raised bed.
    Luo L; Yates SR; Ashworth DJ; Xuan R; Becker JO
    J Agric Food Chem; 2013 Mar; 61(10):2400-6. PubMed ID: 23343207
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biochar significantly reduced fumigant emissions and benefited germination and plant growth under field conditions.
    Wang Q; Gao S; Wang D; Cao A
    Environ Pollut; 2022 Jun; 303():119113. PubMed ID: 35271955
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of application rate on fumigant degradation in five agricultural soils.
    Qin R; Gao S; Ajwa H; Hanson BD
    Sci Total Environ; 2016 Jan; 541():528-534. PubMed ID: 26439645
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Combinations of reduced rates of 1,3-dichloropropene and dazomet as a broad spectrum soil fumigation strategy in view of methyl bromide replacement.
    Van Wambeke E
    Commun Agric Appl Biol Sci; 2007; 72(2):61-70. PubMed ID: 18399425
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of co-formulation of 1,3-dichloropropene and chloropicrin on evaporative emissions from soil.
    Ashworth DJ; Yates SR; Van Wesenbeeck IJ; Stanghellini M
    J Agric Food Chem; 2015 Jan; 63(2):415-21. PubMed ID: 25531174
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lateral movement of soil fumigants 1,3-dichloropropene and chloropicrin from treated agricultural fields.
    Wang D; Gao S; Qin R; Browne G
    J Environ Qual; 2010; 39(5):1800-6. PubMed ID: 21043285
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Coupling field observations, soil modeling, and air dispersion algorithms to estimate 1,3-dichloropropene and chloropicrin flux and exposure.
    Cryer SA; van Wesenbeeck IJ
    J Environ Qual; 2011; 40(5):1450-61. PubMed ID: 21869507
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of soil type, moisture content, redox potential and methyl bromide fumigation on Kd values of radio-selenium in soil.
    Ashworth DJ; Moore J; Shaw G
    J Environ Radioact; 2008 Jul; 99(7):1136-42. PubMed ID: 18328605
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of Rotylenchulus reniformis on Cotton Yield as Affected by Soil Texture and Irrigation.
    Herring SL; Koenning SR; Heitman JL
    J Nematol; 2010 Dec; 42(4):319-23. PubMed ID: 22736865
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of volatile/semivolatile products derived from chemical remediation of cis-1,3-dichloropropene by thiosulfate.
    Zheng W; Gan J; Papiernik SK; Yates SR
    Environ Sci Technol; 2007 Sep; 41(18):6454-9. PubMed ID: 17948793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.