These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 19244538)

  • 1. The origin of adaptation in the auditory pathway of locusts is specific to cell type and function.
    Hildebrandt KJ; Benda J; Hennig RM
    J Neurosci; 2009 Feb; 29(8):2626-36. PubMed ID: 19244538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Input-driven components of spike-frequency adaptation can be unmasked in vivo.
    Gollisch T; Herz AV
    J Neurosci; 2004 Aug; 24(34):7435-44. PubMed ID: 15329390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation and selective information transmission in the cricket auditory neuron AN2.
    Wimmer K; Hildebrandt KJ; Hennig RM; Obermayer K
    PLoS Comput Biol; 2008 Sep; 4(9):e1000182. PubMed ID: 18818723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural correlations increase between consecutive processing levels in the auditory system of locusts.
    Vogel A; Ronacher B
    J Neurophysiol; 2007 May; 97(5):3376-85. PubMed ID: 17360818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Physiological mechanisms of auditory adaptation. I. Peristimulus adaptation].
    Bibikov NG
    Usp Fiziol Nauk; 2010; 41(3):72-91. PubMed ID: 20865939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Channel noise from both slow adaptation currents and fast currents is required to explain spike-response variability in a sensory neuron.
    Fisch K; Schwalger T; Lindner B; Herz AV; Benda J
    J Neurosci; 2012 Nov; 32(48):17332-44. PubMed ID: 23197724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal integration at consecutive processing stages in the auditory pathway of the grasshopper.
    Wirtssohn S; Ronacher B
    J Neurophysiol; 2015 Apr; 113(7):2280-8. PubMed ID: 25609104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionarily conserved coding properties of auditory neurons across grasshopper species.
    Neuhofer D; Wohlgemuth S; Stumpner A; Ronacher B
    Proc Biol Sci; 2008 Sep; 275(1646):1965-74. PubMed ID: 18505715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation reduces spike-count reliability, but not spike-timing precision, of auditory nerve responses.
    Avissar M; Furman AC; Saunders JC; Parsons TD
    J Neurosci; 2007 Jun; 27(24):6461-72. PubMed ID: 17567807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity of intersegmental auditory neurons in a bush cricket.
    Stumpner A; Molina J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Dec; 192(12):1359-76. PubMed ID: 16964494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Representation of acoustic communication signals by insect auditory receptor neurons.
    Machens CK; Stemmler MB; Prinz P; Krahe R; Ronacher B; Herz AV
    J Neurosci; 2001 May; 21(9):3215-27. PubMed ID: 11312306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal coding by populations of auditory receptor neurons.
    Sabourin P; Pollack GS
    J Neurophysiol; 2010 Mar; 103(3):1614-21. PubMed ID: 20071632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variability of spike trains and the processing of temporal patterns of acoustic signals-problems, constraints, and solutions.
    Ronacher B; Franz A; Wohlgemuth S; Hennig RM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Apr; 190(4):257-77. PubMed ID: 14872260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional specializations of primary auditory afferents on the Mauthner cells: interactions between membrane and synaptic properties.
    Curti S; Pereda AE
    J Physiol Paris; 2010; 104(3-4):203-14. PubMed ID: 19941953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature dependence of temporal resolution in an insect nervous system.
    Franz A; Ronacher B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 May; 188(4):261-71. PubMed ID: 12012097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple arithmetic operations in a single neuron: the recruitment of adaptation processes in the cricket auditory pathway depends on sensory context.
    Hildebrandt KJ; Benda J; Hennig RM
    J Neurosci; 2011 Oct; 31(40):14142-50. PubMed ID: 21976499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coding of a sexually dimorphic song feature by auditory interneurons of grasshoppers: the role of leading inhibition.
    Krahe R; Budinger E; Ronacher B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Jan; 187(12):977-85. PubMed ID: 11913816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increase of neuronal response variability at higher processing levels as revealed by simultaneous recordings.
    Vogel A; Hennig RM; Ronacher B
    J Neurophysiol; 2005 Jun; 93(6):3548-59. PubMed ID: 15716366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Processing of modulated sounds in the zebra finch auditory midbrain: responses to noise, frequency sweeps, and sinusoidal amplitude modulations.
    Woolley SM; Casseday JH
    J Neurophysiol; 2005 Aug; 94(2):1143-57. PubMed ID: 15817647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spike-frequency adaptation generates intensity invariance in a primary auditory interneuron.
    Benda J; Hennig RM
    J Comput Neurosci; 2008 Apr; 24(2):113-36. PubMed ID: 17534706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.