These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 19244538)

  • 21. A corollary discharge maintains auditory sensitivity during sound production.
    Poulet JF; Hedwig B
    Nature; 2002 Aug; 418(6900):872-6. PubMed ID: 12192409
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spike-frequency adaptation and intrinsic properties of an identified, looming-sensitive neuron.
    Gabbiani F; Krapp HG
    J Neurophysiol; 2006 Dec; 96(6):2951-62. PubMed ID: 16571737
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temporal encoding for auditory computation: physiology of primary afferent neurons in sound-producing fish.
    Suzuki A; Kozloski J; Crawford JD
    J Neurosci; 2002 Jul; 22(14):6290-301. PubMed ID: 12122088
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Neurophysiological mechanisms of auditory adaptation. II. Poststimulus effects].
    Bibikov NG
    Usp Fiziol Nauk; 2010; 41(4):77-92. PubMed ID: 21254544
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temporal pattern recognition based on instantaneous spike rate coding in a simple auditory system.
    Nabatiyan A; Poulet JF; de Polavieja GG; Hedwig B
    J Neurophysiol; 2003 Oct; 90(4):2484-93. PubMed ID: 14534273
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A neural mechanism for time-window separation resolves ambiguity of adaptive coding.
    Hildebrandt KJ; Ronacher B; Hennig RM; Benda J
    PLoS Biol; 2015 Mar; 13(3):e1002096. PubMed ID: 25761097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transformations of an auditory temporal code in the medulla of a sound-producing fish.
    Kozloski J; Crawford JD
    J Neurosci; 2000 Mar; 20(6):2400-8. PubMed ID: 10704514
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Timescale-invariant representation of acoustic communication signals by a bursting neuron.
    Creutzig F; Wohlgemuth S; Stumpner A; Benda J; Ronacher B; Herz AV
    J Neurosci; 2009 Feb; 29(8):2575-80. PubMed ID: 19244533
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of sound pressure level on the processing of amplitude modulations by auditory neurons of the locust.
    Weschke G; Ronacher B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Mar; 194(3):255-65. PubMed ID: 18074141
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Response recovery in the locust auditory pathway.
    Wirtssohn S; Ronacher B
    J Neurophysiol; 2016 Jan; 115(1):510-9. PubMed ID: 26609115
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrastructure of synaptic contacts between identified neurons of the auditory pathway in Gryllus bimaculatus DeGeer.
    Hirtz R; Wiese K
    J Comp Neurol; 1997 Sep; 386(3):347-57. PubMed ID: 9303422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A corollary discharge mechanism modulates central auditory processing in singing crickets.
    Poulet JF; Hedwig B
    J Neurophysiol; 2003 Mar; 89(3):1528-40. PubMed ID: 12626626
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Connections of the forewing tegulae in the locust flight system and their modification following partial deafferentation.
    Büschges A; Ramirez JM; Driesang R; Pearson KG
    J Neurobiol; 1992 Feb; 23(1):44-60. PubMed ID: 1373440
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spiking local interneurons as primary integrators of mechanosensory information in the locust.
    Siegler MV; Burrows M
    J Neurophysiol; 1983 Dec; 50(6):1281-95. PubMed ID: 6663326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimating receptive fields in the presence of spike-time jitter.
    Gollisch T
    Network; 2006 Jun; 17(2):103-29. PubMed ID: 16818393
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A gain-control mechanism for processing of chorus sounds in the afferent auditory pathway of the bushcricket Tettigonia viridissima (Orthoptera; Tettigoniidae).
    Römer H; Krusch M
    J Comp Physiol A; 2000 Feb; 186(2):181-91. PubMed ID: 10707316
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interdependence of spatial and temporal coding in the auditory midbrain.
    Koch U; Grothe B
    J Neurophysiol; 2000 Apr; 83(4):2300-14. PubMed ID: 10758135
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic dendritic compartmentalization underlies stimulus-specific adaptation in an insect neuron.
    Prešern J; Triblehorn JD; Schul J
    J Neurophysiol; 2015 Jun; 113(10):3787-97. PubMed ID: 25878158
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bone conducted vibration selectively activates irregular primary otolithic vestibular neurons in the guinea pig.
    Curthoys IS; Kim J; McPhedran SK; Camp AJ
    Exp Brain Res; 2006 Nov; 175(2):256-67. PubMed ID: 16761136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parallel processing of proprioceptive signals by spiking local interneurons and motor neurons in the locust.
    Burrows M
    J Neurosci; 1987 Apr; 7(4):1064-80. PubMed ID: 3572474
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.