These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 19244620)
41. X-ray Crystallographic Structure and Oligomerization of Gloeobacter Rhodopsin. Morizumi T; Ou WL; Van Eps N; Inoue K; Kandori H; Brown LS; Ernst OP Sci Rep; 2019 Aug; 9(1):11283. PubMed ID: 31375689 [TBL] [Abstract][Full Text] [Related]
42. Ultra-high-field MAS NMR assay of a multispin labeled ligand bound to its G-protein receptor target in the natural membrane environment: electronic structure of the retinylidene chromophore in rhodopsin. Verhoeven MA; Creemers AF; Bovee-Geurts PH; De Grip WJ; Lugtenburg J; de Groot HJ Biochemistry; 2001 Mar; 40(11):3282-8. PubMed ID: 11258947 [TBL] [Abstract][Full Text] [Related]
43. Detection of fast light-activated H+ release and M intermediate formation from proteorhodopsin. Krebs RA; Alexiev U; Partha R; DeVita AM; Braiman MS BMC Physiol; 2002 Apr; 2():5. PubMed ID: 11943070 [TBL] [Abstract][Full Text] [Related]
44. Cation-Specific Conformations in a Dual-Function Ion-Pumping Microbial Rhodopsin. da Silva GF; Goblirsch BR; Tsai AL; Spudich JL Biochemistry; 2015 Jun; 54(25):3950-9. PubMed ID: 26037033 [TBL] [Abstract][Full Text] [Related]
46. Long-distance perturbation on Schiff base-counterion interactions by His30 and the extracellular Na Shigeta A; Ito S; Kaneko R; Tomida S; Inoue K; Kandori H; Kawamura I Phys Chem Chem Phys; 2018 Mar; 20(13):8450-8455. PubMed ID: 29537054 [TBL] [Abstract][Full Text] [Related]
47. ESR - a retinal protein with unusual properties from Exiguobacterium sibiricum. Petrovskaya LE; Balashov SP; Lukashev EP; Imasheva ES; Gushchin IY; Dioumaev AK; Rubin AB; Dolgikh DA; Gordeliy VI; Lanyi JK; Kirpichnikov MP Biochemistry (Mosc); 2015 Jun; 80(6):688-700. PubMed ID: 26531015 [TBL] [Abstract][Full Text] [Related]
48. Conformation and dynamics of the [3-(13)C]Ala, [1-(13)C]Val-labeled truncated pharaonis transducer, pHtrII(1-159), as revealed by site-directed (13)C solid-state NMR: changes due to association with phoborhodopsin (sensory rhodopsin II). Yamaguchi S; Shimono K; Sudo Y; Tuzi S; Naito A; Kamo N; Saitô H Biophys J; 2004 May; 86(5):3131-40. PubMed ID: 15111426 [TBL] [Abstract][Full Text] [Related]
49. Crystal structure of the eukaryotic light-driven proton-pumping rhodopsin, Acetabularia rhodopsin II, from marine alga. Wada T; Shimono K; Kikukawa T; Hato M; Shinya N; Kim SY; Kimura-Someya T; Shirouzu M; Tamogami J; Miyauchi S; Jung KH; Kamo N; Yokoyama S J Mol Biol; 2011 Sep; 411(5):986-98. PubMed ID: 21726566 [TBL] [Abstract][Full Text] [Related]
50. A phylogenetically distinctive and extremely heat stable light-driven proton pump from the eubacterium Rubrobacter xylanophilus DSM 9941 Kanehara K; Yoshizawa S; Tsukamoto T; Sudo Y Sci Rep; 2017 Mar; 7():44427. PubMed ID: 28290523 [TBL] [Abstract][Full Text] [Related]
51. Structural changes in the photoactive site of proteorhodopsin during the primary photoreaction. Bergo V; Amsden JJ; Spudich EN; Spudich JL; Rothschild KJ Biochemistry; 2004 Jul; 43(28):9075-83. PubMed ID: 15248764 [TBL] [Abstract][Full Text] [Related]
52. Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump. Luecke H Biochim Biophys Acta; 2000 Aug; 1460(1):133-56. PubMed ID: 10984596 [TBL] [Abstract][Full Text] [Related]
53. Temperature Dependency of Proton Pumping Activity for Marine Microbial Rhodopsin from Antartic Ocean. Kim SH; Jung B; Hong SG; Jung KH Sci Rep; 2020 Jan; 10(1):1356. PubMed ID: 31992768 [TBL] [Abstract][Full Text] [Related]
54. Light-powering Escherichia coli with proteorhodopsin. Walter JM; Greenfield D; Bustamante C; Liphardt J Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2408-12. PubMed ID: 17277079 [TBL] [Abstract][Full Text] [Related]
55. Low temperature FTIR spectroscopy provides new insights in the pH-dependent proton pathway of proteorhodopsin. Verhoefen MK; Schäfer G; Shastri S; Weber I; Glaubitz C; Mäntele W; Wachtveitl J Biochim Biophys Acta; 2011 Dec; 1807(12):1583-90. PubMed ID: 21939636 [TBL] [Abstract][Full Text] [Related]
56. Proteorhodopsin Overproduction Enhances the Long-Term Viability of Escherichia coli. Song Y; Cartron ML; Jackson PJ; Davison PA; Dickman MJ; Zhu D; Huang WE; Hunter CN Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31653788 [TBL] [Abstract][Full Text] [Related]
57. Formation of a long-lived photoproduct with a deprotonated Schiff base in proteorhodopsin, and its enhancement by mutation of Asp227. Imasheva ES; Shimono K; Balashov SP; Wang JM; Zadok U; Sheves M; Kamo N; Lanyi JK Biochemistry; 2005 Aug; 44(32):10828-38. PubMed ID: 16086585 [TBL] [Abstract][Full Text] [Related]
58. Binding of anions to proteorhodopsin affects the Asp97 pK(a). Sharaabi Y; Brumfeld V; Sheves M Biochemistry; 2010 Jun; 49(21):4457-65. PubMed ID: 20405821 [TBL] [Abstract][Full Text] [Related]
59. Solid-state 13C and 15N NMR study of the low pH forms of bacteriorhodopsin. de Groot HJ; Smith SO; Courtin J; van den Berg E; Winkel C; Lugtenburg J; Griffin RG; Herzfeld J Biochemistry; 1990 Jul; 29(29):6873-83. PubMed ID: 2168744 [TBL] [Abstract][Full Text] [Related]
60. Asp76 is the Schiff base counterion and proton acceptor in the proton-translocating form of sensory rhodopsin I. Rath P; Spudich E; Neal DD; Spudich JL; Rothschild KJ Biochemistry; 1996 May; 35(21):6690-6. PubMed ID: 8639619 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]