These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 19244964)

  • 21. Effect of superior laryngeal nerve on vocal fold function: an in vivo canine model.
    Slavit DH; McCaffrey TV; Yanagi E
    Otolaryngol Head Neck Surg; 1991 Dec; 105(6):857-63. PubMed ID: 1787976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of tension, stiffness, and airflow on laryngeal resistance in the in vivo canine model.
    Bielamowicz S; Berke GS; Kreiman J; Sercarz JA; Green DC; Gerratt BR
    Ann Otol Rhinol Laryngol; 1993 Oct; 102(10):761-8. PubMed ID: 8215095
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Parameters From the Complete Phonatory Range of an Excised Rabbit Larynx.
    Mills RD; Dodd K; Ablavsky A; Devine E; Jiang JJ
    J Voice; 2017 Jul; 31(4):517.e9-517.e17. PubMed ID: 28108153
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of flow-structure interaction in the larynx during phonation using an immersed-boundary method.
    Luo H; Mittal R; Bielamowicz SA
    J Acoust Soc Am; 2009 Aug; 126(2):816-24. PubMed ID: 19640046
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interactions of subglottal pressure and neuromuscular activation on fundamental frequency and intensity.
    Chhetri DK; Park SJ
    Laryngoscope; 2016 May; 126(5):1123-30. PubMed ID: 26971707
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Larynx morphology and sound production in three species of Testudinidae.
    Sacchi R; Galeotti P; Fasola M; Gerzeli G
    J Morphol; 2004 Aug; 261(2):175-83. PubMed ID: 15216522
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation of phonatory characteristics using ex vivo rabbit larynges.
    Döllinger M; Kniesburges S; Berry DA; Birk V; Wendler O; Dürr S; Alexiou C; Schützenberger A
    J Acoust Soc Am; 2018 Jul; 144(1):142. PubMed ID: 30075689
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of transglottal pressure change on fundamental frequency of phonation: preliminary evaluation of the effect of intraoral pressure change.
    Tanaka K; Kitajima K; Kataoka H
    Folia Phoniatr Logop; 1997; 49(6):300-7. PubMed ID: 9415735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relationship between transglottal pressure and fundamental frequency of phonation--study using a rubber model.
    Owaki S; Kataoka H; Shimizu T
    J Voice; 2010 Mar; 24(2):127-32. PubMed ID: 19230603
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On pressure-frequency relations in the excised larynx.
    Alipour F; Scherer RC
    J Acoust Soc Am; 2007 Oct; 122(4):2296-305. PubMed ID: 17902865
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional posture changes of the vocal fold from paired intrinsic laryngeal muscles.
    Vahabzadeh-Hagh AM; Zhang Z; Chhetri DK
    Laryngoscope; 2017 Mar; 127(3):656-664. PubMed ID: 27377032
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic MRI of larynx and vocal fold vibrations in normal phonation.
    Ahmad M; Dargaud J; Morin A; Cotton F
    J Voice; 2009 Mar; 23(2):235-9. PubMed ID: 18082366
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of the posterior cricoarytenoid muscle in phonation: an electromyographic investigation in dogs.
    Mu LC; Yang SL
    Laryngoscope; 1991 Aug; 101(8):849-54. PubMed ID: 1865733
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A methodological study of hemilaryngeal phonation.
    Jiang JJ; Titze IR
    Laryngoscope; 1993 Aug; 103(8):872-82. PubMed ID: 8361290
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inducing vocal register transition in an in vivo evoked phonation canine model.
    Hsiao TY; Liu CM; Hsu CJ; Lee SY; Lin KN
    J Formos Med Assoc; 2001 Aug; 100(8):543-7. PubMed ID: 11678005
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A pressure-regulated model of normal and pathologic phonation.
    Nasri S; Namazie A; Kreiman J; Sercarz JA; Gerratt BR; Berke GS
    Otolaryngol Head Neck Surg; 1994 Dec; 111(6):807-15. PubMed ID: 7991263
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unsteady laryngeal airflow simulations of the intra-glottal vortical structures.
    Mihaescu M; Khosla SM; Murugappan S; Gutmark EJ
    J Acoust Soc Am; 2010 Jan; 127(1):435-44. PubMed ID: 20058989
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vocal intensity in falsetto phonation of a countertenor: an analysis by synthesis approach.
    Tom K; Titze IR
    J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1667-76. PubMed ID: 11572375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigating Laryngeal "Tilt" on Same-pitch Phonation-Preliminary Findings of Vocal Mode Metal and Density Parameters as Alternatives to Cricothyroid-Thyroarytenoid "Mix".
    Mathias Aaen ; McGlashan J; Sadolin C
    J Voice; 2019 Sep; 33(5):806.e9-806.e21. PubMed ID: 30122461
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [High speed cinematographic analysis of subglottal mucosal vibration during experimentally induced phonation in excised larynges].
    Kurokawa H
    Nihon Jibiinkoka Gakkai Kaiho; 1992 Aug; 95(8):1151-63. PubMed ID: 1403309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.