BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 19245001)

  • 1. Natural organic matter-mediated phase transfer of quantum dots in the aquatic environment.
    Navarro DA; Watson DF; Aga DS; Banerjee S
    Environ Sci Technol; 2009 Feb; 43(3):677-82. PubMed ID: 19245001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partitioning of hydrophobic CdSe quantum dots into aqueous dispersions of humic substances: influence of capping-group functionality on the phase-transfer mechanism.
    Navarro DA; Banerjee S; Aga DS; Watson DF
    J Colloid Interface Sci; 2010 Aug; 348(1):119-28. PubMed ID: 20451211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic matters adsorbed on goethite inhibited the heterogeneous aggregation and adsorption of CdSe quantum dots: Experiments and extended DLVO theory.
    Liang W; Zhang W; Shao X; Gong K; Su C; Zhang W; Peng C
    J Hazard Mater; 2024 Apr; 467():133769. PubMed ID: 38359758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlating the chemical and spectroscopic characteristics of natural organic matter with the photodegradation of sulfamerazine.
    Batista APS; Teixeira ACSC; Cooper WJ; Cottrell BA
    Water Res; 2016 Apr; 93():20-29. PubMed ID: 26878479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered nanoparticles and organic matter: a review of the state-of-the-art.
    Grillo R; Rosa AH; Fraceto LF
    Chemosphere; 2015 Jan; 119():608-619. PubMed ID: 25128893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photodegradation of natural organic matter from diverse freshwater sources.
    Winter AR; Fish TA; Playle RC; Smith DS; Curtis PJ
    Aquat Toxicol; 2007 Aug; 84(2):215-22. PubMed ID: 17640746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Apolar Compound Sorption to Aquatic Natural Organic Matter Accounting for Natural Organic Matter Hydrophobicity Using Aqueous Two-Phase Systems.
    Liu K; Fu H; Zhu D; Qu X
    Environ Sci Technol; 2019 Jul; 53(14):8127-8135. PubMed ID: 31264416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative importance of the humic and fulvic fractions of natural organic matter in the aggregation and deposition of silver nanoparticles.
    Furman O; Usenko S; Lau BL
    Environ Sci Technol; 2013 Feb; 47(3):1349-56. PubMed ID: 23298221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the effects of humic and fulvic acids on quantum dot nanoparticles using capillary electrophoresis with laser-induced fluorescence detection.
    Celiz MD; Colón LA; Watson DF; Aga DS
    Environ Sci Technol; 2011 Apr; 45(7):2917-24. PubMed ID: 21381674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partitioning behavior and stabilization of hydrophobically coated HfO2, ZrO2 and Hfx Zr 1-x O2 nanoparticles with natural organic matter reveal differences dependent on crystal structure.
    Navarro DA; Depner SW; Watson DF; Aga DS; Banerjee S
    J Hazard Mater; 2011 Nov; 196():302-10. PubMed ID: 21963173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aqueous phase transfer of InP/ZnS nanocrystals conserving fluorescence and high colloidal stability.
    Tamang S; Beaune G; Texier I; Reiss P
    ACS Nano; 2011 Dec; 5(12):9392-402. PubMed ID: 22035355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The stability and removal of water-dispersed CdSe/CdS core-shell quantum dots from water.
    Chen X; Ok YS; Mohan D; Pittman CU; Dou X
    Chemosphere; 2017 Oct; 185():926-933. PubMed ID: 28747004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiolate-Capped CdSe/ZnS Core-Shell Quantum Dots for the Sensitive Detection of Glucose.
    Abd Rahman S; Ariffin N; Yusof NA; Abdullah J; Mohammad F; Ahmad Zubir Z; Nik Abd Aziz NMA
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28671559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An overview of the uses of high performance size exclusion chromatography (HPSEC) in the characterization of natural organic matter (NOM) in potable water, and ion-exchange applications.
    Brezinski K; Gorczyca B
    Chemosphere; 2019 Feb; 217():122-139. PubMed ID: 30414544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deposition kinetics of quantum dots and polystyrene latex nanoparticles onto alumina: role of water chemistry and particle coating.
    Quevedo IR; Olsson AL; Tufenkji N
    Environ Sci Technol; 2013 Mar; 47(5):2212-20. PubMed ID: 23421856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of ζ-potential, charge, and number of organic ligands on the surface of water soluble quantum dots by capillary electrophoresis.
    Voráčová I; Klepárník K; Lišková M; Foret F
    Electrophoresis; 2015 Mar; 36(6):867-74. PubMed ID: 25521532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three bisphosphonate ligands improve the water solubility of quantum dots.
    Abdul Ghani SF; Wright M; Paramo JG; Bottrill M; Green M; Long N; Thanou M
    Faraday Discuss; 2014; 175():153-69. PubMed ID: 25318058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of natural organic matter on the physicochemical properties of aqueous C60 nanoparticles.
    Xie B; Xu Z; Guo W; Li Q
    Environ Sci Technol; 2008 Apr; 42(8):2853-9. PubMed ID: 18497134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of 3-D Fluorescence: Characterization of Natural Organic Matter in Natural Water and Water Purification Systems.
    Zhu G; Bian Y; Hursthouse AS; Wan P; Szymanska K; Ma J; Wang X; Zhao Z
    J Fluoresc; 2017 Nov; 27(6):2069-2094. PubMed ID: 28828542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters.
    Hyung H; Kim JH
    Environ Sci Technol; 2008 Jun; 42(12):4416-21. PubMed ID: 18605564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.