These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 19245039)
1. Mercury(II) bioaccumulation and antioxidant physiology in four aquatic insects. Xie L; Flippin JL; Deighton N; Funk DH; Dickey DA; Buchwalter DB Environ Sci Technol; 2009 Feb; 43(3):934-40. PubMed ID: 19245039 [TBL] [Abstract][Full Text] [Related]
2. Comparative sodium transport patterns provide clues for understanding salinity and metal responses in aquatic insects. Scheibener SA; Richardi VS; Buchwalter DB Aquat Toxicol; 2016 Feb; 171():20-9. PubMed ID: 26730725 [TBL] [Abstract][Full Text] [Related]
3. Antioxidative responses and bioaccumulation in Japanese flounder larvae and juveniles under chronic mercury exposure. Huang W; Cao L; Ye Z; Yin X; Dou S Comp Biochem Physiol C Toxicol Pharmacol; 2010 Jun; 152(1):99-106. PubMed ID: 20227522 [TBL] [Abstract][Full Text] [Related]
4. The Effects of Sub-lethal Dietary Mercury on Growth Performance, Bioaccumulation, and Activities of Antioxidant Enzymes in Sea Cucumber, Apostichopus japonicus. Li Z; Ren T; Han Y; Jiang Z; Hu Y; Bai Z; Wang L; Ding J Bull Environ Contam Toxicol; 2018 May; 100(5):683-689. PubMed ID: 29541817 [TBL] [Abstract][Full Text] [Related]
5. Trace metal concentration, antioxidant enzyme activities and susceptibility to oxidative stress in the tricoptera larvae Hydropsyche exocellata from the Llobregat river basin (NE Spain). Barata C; Lekumberri I; Vila-Escalé M; Prat N; Porte C Aquat Toxicol; 2005 Aug; 74(1):3-19. PubMed ID: 15916818 [TBL] [Abstract][Full Text] [Related]
6. Interspecific differences in the antioxidant capacity of two Laridae species exposed to metals. Espín S; Martínez-López E; Jiménez P; María-Mojica P; García-Fernández AJ Environ Res; 2016 May; 147():115-24. PubMed ID: 26866449 [TBL] [Abstract][Full Text] [Related]
7. Phylogeny and size differentially influence dissolved Cd and Zn bioaccumulation parameters among closely related aquatic insects. Poteat MD; Buchwalter DB Environ Sci Technol; 2014 May; 48(9):5274-81. PubMed ID: 24730589 [TBL] [Abstract][Full Text] [Related]
8. Lipid peroxidation vs. antioxidant modulation in the bivalve Scrobicularia plana in response to environmental mercury--organ specificities and age effect. Ahmad I; Mohmood I; Mieiro CL; Coelho JP; Pacheco M; Santos MA; Duarte AC; Pereira E Aquat Toxicol; 2011 Jun; 103(3-4):150-8. PubMed ID: 21470551 [TBL] [Abstract][Full Text] [Related]
9. Mercury induced oxidative stress, DNA damage, and activation of antioxidative system and Hsp70 induction in duckweed (Lemna minor). Zhang T; Lu Q; Su C; Yang Y; Hu D; Xu Q Ecotoxicol Environ Saf; 2017 Sep; 143():46-56. PubMed ID: 28500894 [TBL] [Abstract][Full Text] [Related]
10. Modulation of antioxidant defences in digestive gland of Perna viridis (L.), on mercury exposures. Verlecar XN; Jena KB; Chainy GB Chemosphere; 2008 May; 71(10):1977-85. PubMed ID: 18329067 [TBL] [Abstract][Full Text] [Related]
11. The mercury accumulation and its effects on antioxidant and immune responses in starry flounder, Platichthys stellatus exposed to dietary mercury. Choi JH; Kim JH; Kang JC Fish Shellfish Immunol; 2023 Apr; 135():108658. PubMed ID: 36868538 [TBL] [Abstract][Full Text] [Related]
12. Short-term mercury exposure affecting the development and antioxidant biomarkers of Japanese flounder embryos and larvae. Huang W; Cao L; Liu J; Lin L; Dou S Ecotoxicol Environ Saf; 2010 Nov; 73(8):1875-83. PubMed ID: 20833429 [TBL] [Abstract][Full Text] [Related]
13. Biomarker responses in fish exposed to polycyclic aromatic hydrocarbons (PAHs): Systematic review and meta-analysis. Santana MS; Sandrini-Neto L; Filipak Neto F; Oliveira Ribeiro CA; Di Domenico M; Prodocimo MM Environ Pollut; 2018 Nov; 242(Pt A):449-461. PubMed ID: 30005257 [TBL] [Abstract][Full Text] [Related]
14. Mercury accumulation patterns and biochemical endpoints in wild fish (Liza aurata): a multi-organ approach. Mieiro CL; Duarte AC; Pereira ME; Pacheco M Ecotoxicol Environ Saf; 2011 Nov; 74(8):2225-32. PubMed ID: 21862130 [TBL] [Abstract][Full Text] [Related]
15. Halimione portulacoides (L.) physiological/biochemical characterization for its adaptive responses to environmental mercury exposure. Anjum NA; Israr M; Duarte AC; Pereira ME; Ahmad I Environ Res; 2014 May; 131():39-49. PubMed ID: 24641832 [TBL] [Abstract][Full Text] [Related]
16. Spatial and taxonomic variation in trace element bioaccumulation in two herbivores from a coal combustion waste contaminated stream. Fletcher DE; Lindell AH; Stillings GK; Mills GL; Blas SA; Vaun McArthur J Ecotoxicol Environ Saf; 2014 Mar; 101():196-204. PubMed ID: 24507146 [TBL] [Abstract][Full Text] [Related]
17. Age-dependent antioxidant responses to the bioconcentration of microcystin-LR in the mysid crustacean, Neomysis awatschensis. Min BH; Ravikumar Y; Lee DH; Choi KS; Kim BM; Rhee JS Environ Pollut; 2018 Jan; 232():284-292. PubMed ID: 28947316 [TBL] [Abstract][Full Text] [Related]
18. Mercury Distribution Along the Food Chain of a Wetland Ecosystem at Sanjiang Plain, Northeast China. Zhilong M; Qiang W; Zhongsheng Z; Xuehong Z Bull Environ Contam Toxicol; 2017 Feb; 98(2):162-166. PubMed ID: 27999881 [TBL] [Abstract][Full Text] [Related]
19. Characterization and response of antioxidant systems in the tissues of the freshwater pond snail (Lymnaea stagnalis) during acute copper exposure. Atli G; Grosell M Aquat Toxicol; 2016 Jul; 176():38-44. PubMed ID: 27108202 [TBL] [Abstract][Full Text] [Related]
20. Antioxidant response and oxidative stress levels in Macrobrachium borellii (Crustacea: Palaemonidae) exposed to the water-soluble fraction of petroleum. Lavarías S; Heras H; Pedrini N; Tournier H; Ansaldo M Comp Biochem Physiol C Toxicol Pharmacol; 2011 May; 153(4):415-21. PubMed ID: 21320634 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]