These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 19245247)

  • 1. Mechanisms of peptide amphiphile internalization by SJSA-1 cells in vitro.
    Missirlis D; Khant H; Tirrell M
    Biochemistry; 2009 Apr; 48(15):3304-14. PubMed ID: 19245247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Internalization of p53(14-29) peptide amphiphiles and subsequent endosomal disruption results in SJSA-1 cell death.
    Missirlis D; Krogstad DV; Tirrell M
    Mol Pharm; 2010 Dec; 7(6):2173-84. PubMed ID: 20822110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the impact of valency on the routing of arginine-rich peptides into eukaryotic cells.
    Kawamura KS; Sung M; Bolewska-Pedyczak E; GariƩpy J
    Biochemistry; 2006 Jan; 45(4):1116-27. PubMed ID: 16430208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significant Differences in the Development of Acquired Resistance to the MDM2 Inhibitor SAR405838 between In Vitro and In Vivo Drug Treatment.
    Hoffman-Luca CG; Yang CY; Lu J; Ziazadeh D; McEachern D; Debussche L; Wang S
    PLoS One; 2015; 10(6):e0128807. PubMed ID: 26070072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted delivery of a novel palmitylated D-peptide for antiglioblastoma molecular therapy.
    Li C; Shen J; Wei X; Xie C; Lu W
    J Drug Target; 2012 Apr; 20(3):264-71. PubMed ID: 22233211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A stapled peptide antagonist of MDM2 carried by polymeric micelles sensitizes glioblastoma to temozolomide treatment through p53 activation.
    Chen X; Tai L; Gao J; Qian J; Zhang M; Li B; Xie C; Lu L; Lu W; Lu W
    J Control Release; 2015 Nov; 218():29-35. PubMed ID: 26428461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. d-Amino acid mutation of PMI as potent dual peptide inhibitors of p53-MDM2/MDMX interactions.
    Li X; Liu C; Chen S; Hu H; Su J; Zou Y
    Bioorg Med Chem Lett; 2017 Oct; 27(20):4678-4681. PubMed ID: 28916339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An N-terminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo.
    Midgley CA; Desterro JM; Saville MK; Howard S; Sparks A; Hay RT; Lane DP
    Oncogene; 2000 May; 19(19):2312-23. PubMed ID: 10822382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into the role of HSPG in the cellular uptake of apolipoprotein E-derived peptide micelles and liposomes.
    Leupold E; Nikolenko H; Beyermann M; Dathe M
    Biochim Biophys Acta; 2008 Dec; 1778(12):2781-9. PubMed ID: 18930020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of cell-penetrating peptide-based drug leads to inhibit MDMX:p53 and MDM2:p53 interactions.
    Philippe G; Huang YH; Cheneval O; Lawrence N; Zhang Z; Fairlie DP; Craik DJ; de Araujo AD; Henriques ST
    Biopolymers; 2016 Nov; 106(6):853-863. PubMed ID: 27287767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient p53 activation and apoptosis by simultaneous disruption of binding to MDM2 and MDMX.
    Hu B; Gilkes DM; Chen J
    Cancer Res; 2007 Sep; 67(18):8810-7. PubMed ID: 17875722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient synthesis of a beta-peptide combinatorial library with microwave irradiation.
    Murray JK; Farooqi B; Sadowsky JD; Scalf M; Freund WA; Smith LM; Chen J; Gellman SH
    J Am Chem Soc; 2005 Sep; 127(38):13271-80. PubMed ID: 16173757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QSAR: hydropathic analysis of inhibitors of the p53-mdm2 interaction.
    Galatin PS; Abraham DJ
    Proteins; 2001 Nov; 45(3):169-75. PubMed ID: 11599019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis of competitive recognition of p53 and MDM2 by HAUSP/USP7: implications for the regulation of the p53-MDM2 pathway.
    Hu M; Gu L; Li M; Jeffrey PD; Gu W; Shi Y
    PLoS Biol; 2006 Feb; 4(2):e27. PubMed ID: 16402859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Miniature protein inhibitors of the p53-hDM2 interaction.
    Kritzer JA; Zutshi R; Cheah M; Ran FA; Webman R; Wongjirad TM; Schepartz A
    Chembiochem; 2006 Jan; 7(1):29-31. PubMed ID: 16397877
    [No Abstract]   [Full Text] [Related]  

  • 16. Linker chemistry determines secondary structure of p5314-29 in peptide amphiphile micelles.
    Missirlis D; Farine M; Kastantin M; Ananthanarayanan B; Neumann T; Tirrell M
    Bioconjug Chem; 2010 Mar; 21(3):465-75. PubMed ID: 20166676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional Self-Assembling Peptide-Based Nanostructures for Targeted Intracellular Delivery: Design, Physicochemical Characterization, and Biological Assessment.
    Shi Y; Lin R; Cui H; Azevedo HS
    Methods Mol Biol; 2018; 1758():11-26. PubMed ID: 29679319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the stapled p53 peptide bound to Mdm2.
    Baek S; Kutchukian PS; Verdine GL; Huber R; Holak TA; Lee KW; Popowicz GM
    J Am Chem Soc; 2012 Jan; 134(1):103-6. PubMed ID: 22148351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different internalization pathways of polymeric micelles and unimers and their effects on vesicular transport.
    Sahay G; Batrakova EV; Kabanov AV
    Bioconjug Chem; 2008 Oct; 19(10):2023-9. PubMed ID: 18729494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting of p53 peptide analogues to anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy.
    Shin JS; Ha JH; Chi SW
    Biochem Biophys Res Commun; 2014 Jan; 443(3):882-7. PubMed ID: 24342622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.