BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 19245270)

  • 1. Technical basis for polar and nonpolar narcotic chemicals and polycyclic aromatic hydrocarbon criteria. III. A polyparameter model for target lipid partitioning.
    Kipka U; Di Toro DM
    Environ Toxicol Chem; 2009 Jul; 28(7):1429-38. PubMed ID: 19245270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The application of QSARs, extrapolation and equilibrium partitioning in aquatic effects assessment for narcotic pollutants.
    Van Leeuwen CJ; Van der Zandt PT; Aldenberg T; Verhaar HJ; Hermens JL
    Sci Total Environ; 1991 Dec; 109-110():681-90. PubMed ID: 1815382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling polycyclic aromatic hydrocarbon bioaccumulation and metabolism in time-variable early life-stage exposures.
    Mathew R; McGrath JA; Di Toro DM
    Environ Toxicol Chem; 2008 Jul; 27(7):1515-25. PubMed ID: 18366260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the Target Lipid Model to Assess Toxicity of Heterocyclic Aromatic Compounds to Aquatic Organisms.
    McGrath J; Getzinger G; Redman AD; Edwards M; Martin Aparicio A; Vaiopoulou E
    Environ Toxicol Chem; 2021 Nov; 40(11):3000-3009. PubMed ID: 34407226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phototoxic target lipid model of single polycyclic aromatic hydrocarbons.
    Marzooghi S; Finch BE; Stubblefield WA; Dmitrenko O; Neal SL; Di Toro DM
    Environ Toxicol Chem; 2017 Apr; 36(4):926-937. PubMed ID: 27552664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of critical body residue data for acute narcosis in aquatic organisms.
    McCarty LS; Arnot JA; Mackay D
    Environ Toxicol Chem; 2013 Oct; 32(10):2301-14. PubMed ID: 23720389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxicity of organic pollutants to seven aquatic organisms: effect of polarity and ionization.
    Qin WC; Su LM; Zhang XJ; Qin HW; Wen Y; Guo Z; Sun FT; Sheng LX; Zhao YH; Abraham MH
    SAR QSAR Environ Res; 2010 Jul; 21(5-6):389-401. PubMed ID: 20818578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear dependence of fish bioconcentration on n-octanol/water partition coefficient.
    Bintein S; Devillers J; Karcher W
    SAR QSAR Environ Res; 1993; 1(1):29-39. PubMed ID: 8790626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the toxicity of polar and nonpolar narcotic compounds to luminescent bacterium Shk1.
    Ren S; Frymier PD
    Environ Toxicol Chem; 2002 Dec; 21(12):2649-53. PubMed ID: 12463560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative structure-activity relationship for aromatic hydrocarbons on freshwater fish.
    Di Marzio W; Saenz ME
    Ecotoxicol Environ Saf; 2004 Oct; 59(2):256-62. PubMed ID: 15327885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serum albumin binding of structurally diverse neutral organic compounds: data and models.
    Endo S; Goss KU
    Chem Res Toxicol; 2011 Dec; 24(12):2293-301. PubMed ID: 22070391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotransformation model of neutral and weakly polar organic compounds in fish incorporating internal partitioning.
    Kuo DT; Di Toro DM
    Environ Toxicol Chem; 2013 Aug; 32(8):1873-81. PubMed ID: 23625748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-linear modeling of bioconcentration using partition coefficients for narcotic chemicals.
    Dimitrov SD; Mekenyan OG; Walker JD
    SAR QSAR Environ Res; 2002 Mar; 13(1):177-84. PubMed ID: 12074386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The combined toxic effects of nonpolar narcotic chemicals to Pseudokirchneriella subcapitata.
    Hsieh SH; Tsai KP; Chen CY
    Water Res; 2006 Jun; 40(10):1957-64. PubMed ID: 16687162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of the target lipid model for toxicity assessment of residual petroleum constituents: monocyclic and polycyclic aromatic hydrocarbons.
    McGrath JA; Di Toro DM
    Environ Toxicol Chem; 2009 Jun; 28(6):1130-48. PubMed ID: 19173550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting single and mixture toxicity of petrogenic polycyclic aromatic hydrocarbons to the copepod Oithona davisae.
    Barata C; Calbet A; Saiz E; Ortiz L; Bayona JM
    Environ Toxicol Chem; 2005 Nov; 24(11):2992-9. PubMed ID: 16398138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association between contaminant tissue residues and effects in aquatic organisms.
    Barron MG; Hansen JA; Lipton J
    Rev Environ Contam Toxicol; 2002; 173():1-37. PubMed ID: 11776748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting algal growth inhibition toxicity: three-step strategy using structural and physicochemical properties.
    Furuhama A; Hasunuma K; Hayashi TI; Tatarazako N
    SAR QSAR Environ Res; 2016 May; 27(5):343-62. PubMed ID: 27171903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of concentration addition toxicity: they are different for nonpolar narcotic chemicals, polar narcotic chemicals and reactive chemicals.
    Lin Z; Du J; Yin K; Wang L; Yu H
    Chemosphere; 2004 Mar; 54(11):1691-701. PubMed ID: 14675847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Target site model: Application of the polyparameter target lipid model to predict aquatic organism acute toxicity for various modes of action.
    Boone KS; Di Toro DM
    Environ Toxicol Chem; 2019 Jan; 38(1):222-239. PubMed ID: 30255636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.