BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 19245273)

  • 1. Methods for estimating the bioconcentration factor of ionizable organic chemicals.
    Fu W; Franco A; Trapp S
    Environ Toxicol Chem; 2009 Jul; 28(7):1372-9. PubMed ID: 19245273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal choice of pH for toxicity and bioaccumulation studies of ionizing organic chemicals.
    Rendal C; Kusk KO; Trapp S
    Environ Toxicol Chem; 2011 Nov; 30(11):2395-406. PubMed ID: 21823161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linear and non-linear relationships between bioconcentration and hydrophobicity: theoretical consideration.
    Wen Y; He J; Liu X; Li J; Zhao Y
    Environ Toxicol Pharmacol; 2012 Sep; 34(2):200-208. PubMed ID: 22543246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods for predicting the rate constant for uptake of organic chemicals from water by fish.
    Brooke DN; Crookes MJ; Merckel DA
    Environ Toxicol Chem; 2012 Nov; 31(11):2465-71. PubMed ID: 22865682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical explanation for the non-linear hydrophobicity-dependent bioconcentration processes of persistent organic pollutants in phytoplankton.
    Seto M; Handoh IC
    Chemosphere; 2009 Oct; 77(5):679-86. PubMed ID: 19695667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and evaluation of a mechanistic bioconcentration model for ionogenic organic chemicals in fish.
    Armitage JM; Arnot JA; Wania F; Mackay D
    Environ Toxicol Chem; 2013 Jan; 32(1):115-28. PubMed ID: 23023933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of n-octanol/water partition coefficients of weak ionizable solutes by RP-HPLC with neutral model compounds.
    Han SY; Qiao JQ; Zhang YY; Lian HZ; Ge X
    Talanta; 2012 Aug; 97():355-61. PubMed ID: 22841092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of soil pH on the sorption of ionizable chemicals: modeling advances.
    Franco A; Fu W; Trapp S
    Environ Toxicol Chem; 2009 Mar; 28(3):458-64. PubMed ID: 18937533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the bioconcentration factor of highly hydrophobic organic chemicals.
    Garg R; Smith CJ
    Food Chem Toxicol; 2014 Jul; 69():252-9. PubMed ID: 24759698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new hazard index of complex mixtures integrates bioconcentration and toxicity to refine the environmental risk assessment of effluents.
    Gutiérrez S; Fernández C; Escher BI; Tarazona JV
    Environ Int; 2008 Aug; 34(6):773-81. PubMed ID: 18291529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioconcentration model for non-ionic, polar, and ionizable organic compounds in amphipod.
    Chen CC; Kuo DTF
    Environ Toxicol Chem; 2018 May; 37(5):1378-1386. PubMed ID: 29315781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dow and Kaw,eff vs. Kow and Kaw degrees: acid/base ionization effects on partitioning properties and screening commercial chemicals for long-range transport and bioaccumulation potential.
    Rayne S; Forest K
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Oct; 45(12):1550-94. PubMed ID: 20721799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A reductionist mechanistic model for bioconcentration of neutral and weakly polar organic compounds in fish.
    Kuo DT; Di Toro DM
    Environ Toxicol Chem; 2013 Sep; 32(9):2089-99. PubMed ID: 23703865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of the soil-water partition coefficient normalized to organic carbon for ionizable organic chemicals.
    Franco A; Trapp S
    Environ Toxicol Chem; 2008 Oct; 27(10):1995-2004. PubMed ID: 18384236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Reduced Model for Bioconcentration and Biotransformation of Neutral Organic Compounds in Midge.
    Kuo DTF; Chen CC
    Environ Toxicol Chem; 2021 Jan; 40(1):57-71. PubMed ID: 33044762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using conditional inference trees and random forests to predict the bioaccumulation potential of organic chemicals.
    Strempel S; Nendza M; Scheringer M; Hungerbühler K
    Environ Toxicol Chem; 2013 Apr; 32(5):1187-95. PubMed ID: 23382013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of the bioaccumulation factor to screen chemicals for bioaccumulation potential.
    Costanza J; Lynch DG; Boethling RS; Arnot JA
    Environ Toxicol Chem; 2012 Oct; 31(10):2261-8. PubMed ID: 22821825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PBT assessment under REACH: Screening for low aquatic bioaccumulation with QSAR classifications based on physicochemical properties to replace BCF in vivo testing on fish.
    Nendza M; Kühne R; Lombardo A; Strempel S; Schüürmann G
    Sci Total Environ; 2018 Mar; 616-617():97-106. PubMed ID: 29107783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion-exchange affinity of organic cations to natural organic matter: influence of amine type and nonionic interactions at two different pHs.
    Droge ST; Goss KU
    Environ Sci Technol; 2013 Jan; 47(2):798-806. PubMed ID: 23214498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating octanol-air partition coefficients with octanol-water partition coefficients and Henry's law constants.
    Meylan WM; Howard PH
    Chemosphere; 2005 Nov; 61(5):640-4. PubMed ID: 15907971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.