BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 19245286)

  • 1. Influence of liquid water and soil temperature on petroleum hydrocarbon toxicity in Antarctic soil.
    Schafer AN; Snape I; Siciliano SD
    Environ Toxicol Chem; 2009 Jul; 28(7):1409-15. PubMed ID: 19245286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validating potential toxicity assays to assess petroleum hydrocarbon toxicity in polar soil.
    Harvey AN; Snape I; Siciliano SD
    Environ Toxicol Chem; 2012 Feb; 31(2):402-7. PubMed ID: 22102175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil biogeochemical toxicity end points for sub-Antarctic islands contaminated with petroleum hydrocarbons.
    Schafer AN; Snape I; Siciliano SD
    Environ Toxicol Chem; 2007 May; 26(5):890-7. PubMed ID: 17521134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil.
    Labud V; Garcia C; Hernandez T
    Chemosphere; 2007 Jan; 66(10):1863-71. PubMed ID: 17083964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low temperature bioremediation of oil-contaminated soil using biostimulation and bioaugmentation with a Pseudomonas sp. from maritime Antarctica.
    Stallwood B; Shears J; Williams PA; Hughes KA
    J Appl Microbiol; 2005; 99(4):794-802. PubMed ID: 16162230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Petroleum hydrocarbon biodegradation under seasonal freeze-thaw soil temperature regimes in contaminated soils from a sub-Arctic site.
    Chang W; Klemm S; Beaulieu C; Hawari J; Whyte L; Ghoshal S
    Environ Sci Technol; 2011 Feb; 45(3):1061-6. PubMed ID: 21194195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoremediation of hydrocarbon contaminants in subantarctic soils: an effective management option.
    Bramley-Alves J; Wasley J; King CK; Powell S; Robinson SA
    J Environ Manage; 2014 Sep; 142():60-9. PubMed ID: 24836716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of microbial gene abundance in the development of fuel remediation guidelines in polar soils.
    Richardson EL; King CK; Powell SM
    Integr Environ Assess Manag; 2015 Apr; 11(2):235-41. PubMed ID: 25209011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in liquid water alter nutrient bioavailability and gas diffusion in frozen antarctic soils contaminated with petroleum hydrocarbons.
    Harvey AN; Snape I; Siciliano SD
    Environ Toxicol Chem; 2012 Feb; 31(2):395-401. PubMed ID: 22102214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity of fuel-contaminated soil to Antarctic moss and terrestrial algae.
    Nydahl AC; King CK; Wasley J; Jolley DF; Robinson SA
    Environ Toxicol Chem; 2015 Sep; 34(9):2004-12. PubMed ID: 25891024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses of Antarctic soil microbial communities and associated functions to temperature and freeze-thaw cycle frequency.
    Yergeau E; Kowalchuk GA
    Environ Microbiol; 2008 Sep; 10(9):2223-35. PubMed ID: 18479442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of ecotoxicity of petroleum hydrocarbon mixtures in soil based on HPLC-GCXGC analysis.
    Mao D; Lookman R; Van De Weghe H; Weltens R; Vanermen G; De Brucker N; Diels L
    Chemosphere; 2009 Dec; 77(11):1508-13. PubMed ID: 19879629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrocarbon contamination increases the liquid water content of frozen Antarctic soils.
    Siciliano SD; Schafer AN; Forgeron MA; Snape I
    Environ Sci Technol; 2008 Nov; 42(22):8324-9. PubMed ID: 19068813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Petroleum hydrocarbon contamination in boreal forest soils: a mycorrhizal ecosystems perspective.
    Robertson SJ; McGill WB; Massicotte HB; Rutherford PM
    Biol Rev Camb Philos Soc; 2007 May; 82(2):213-40. PubMed ID: 17437558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Pinus sylvestris root growth and mycorrhizosphere development on bacterial carbon source utilization and hydrocarbon oxidation in forest and petroleum-contaminated soils.
    Heinonsalo J; Jørgensen KS; Haahtela K; Sen R
    Can J Microbiol; 2000 May; 46(5):451-64. PubMed ID: 10872081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial communities and chemical parameters in soils and coastal sediments in response to diesel spills at Carlini Station, Antarctica.
    Vázquez S; Monien P; Pepino Minetti R; Jürgens J; Curtosi A; Villalba Primitz J; Frickenhaus S; Abele D; Mac Cormack W; Helmke E
    Sci Total Environ; 2017 Dec; 605-606():26-37. PubMed ID: 28662428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of petroleum hydrocarbon contamination on microalgae and microbial activities in a long-term contaminated soil.
    Megharaj M; Singleton I; McClure NC; Naidu R
    Arch Environ Contam Toxicol; 2000 May; 38(4):439-45. PubMed ID: 10787094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-walled carbon nanotubes alter soil microbial community composition.
    Jin L; Son Y; DeForest JL; Kang YJ; Kim W; Chung H
    Sci Total Environ; 2014 Jan; 466-467():533-8. PubMed ID: 23933455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biostimulation of natural microbial assemblages in oil-amended vegetated and desert sub-Antarctic soils.
    Delille D; Coulon F; Pelletier E
    Microb Ecol; 2004 May; 47(4):407-15. PubMed ID: 14681739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing risks from fuel contamination in Antarctica: Dynamics of diesel ageing in soil and toxicity to an endemic nematode.
    Brown KE; Wasley J; King CK
    Ecotoxicol Environ Saf; 2023 Jan; 249():114345. PubMed ID: 36508834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.