These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
604 related articles for article (PubMed ID: 19245318)
1. Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Wang Z; Mao H; Dong C; Ji R; Cai L; Fu H; Liu S Mol Plant Microbe Interact; 2009 Mar; 22(3):235-44. PubMed ID: 19245318 [TBL] [Abstract][Full Text] [Related]
2. BnaMPK6 is a determinant of quantitative disease resistance against Sclerotinia sclerotiorum in oilseed rape. Wang Z; Zhao FY; Tang MQ; Chen T; Bao LL; Cao J; Li YL; Yang YH; Zhu KM; Liu S; Tan XL Plant Sci; 2020 Feb; 291():110362. PubMed ID: 31928657 [TBL] [Abstract][Full Text] [Related]
3. Functional expression of Cf9 and Avr9 genes in Brassica napus induces enhanced resistance to Leptosphaeria maculans. Hennin C; Höfte M; Diederichsen E Mol Plant Microbe Interact; 2001 Sep; 14(9):1075-85. PubMed ID: 11551072 [TBL] [Abstract][Full Text] [Related]
4. Expression of anti-sclerotinia scFv in transgenic Brassica napus enhances tolerance against stem rot. Yajima W; Verma SS; Shah S; Rahman MH; Liang Y; Kav NN N Biotechnol; 2010 Dec; 27(6):816-21. PubMed ID: 20933110 [TBL] [Abstract][Full Text] [Related]
5. Nitric oxide participates in the complex interplay of defense-related signaling pathways controlling disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana. Perchepied L; Balagué C; Riou C; Claudel-Renard C; Rivière N; Grezes-Besset B; Roby D Mol Plant Microbe Interact; 2010 Jul; 23(7):846-60. PubMed ID: 20521948 [TBL] [Abstract][Full Text] [Related]
6. Overexpression of BnWRKY33 in oilseed rape enhances resistance to Sclerotinia sclerotiorum. Wang Z; Fang H; Chen Y; Chen K; Li G; Gu S; Tan X Mol Plant Pathol; 2014 Sep; 15(7):677-89. PubMed ID: 24521393 [TBL] [Abstract][Full Text] [Related]
7. Decreased incidence of disease caused by Sclerotinia sclerotiorum and improved plant vigor of oilseed rape with Bacillus subtilis Tu-100. Hu X; Roberts DP; Jiang M; Zhang Y Appl Microbiol Biotechnol; 2005 Oct; 68(6):802-7. PubMed ID: 15744488 [TBL] [Abstract][Full Text] [Related]
8. In vivo measurements of changes in pH triggered by oxalic acid in leaf tissue of transgenic oilseed rape. Zou QJ; Liu SY; Dong XY; Bi YH; Cao YC; Xu Q; Zhao YD; Chen H Phytochem Anal; 2007; 18(4):341-6. PubMed ID: 17623369 [TBL] [Abstract][Full Text] [Related]
9. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Wu J; Zhao Q; Yang Q; Liu H; Li Q; Yi X; Cheng Y; Guo L; Fan C; Zhou Y Sci Rep; 2016 Jan; 6():19007. PubMed ID: 26743436 [TBL] [Abstract][Full Text] [Related]
10. Interactions of WRKY15 and WRKY33 transcription factors and their roles in the resistance of oilseed rape to Sclerotinia infection. Liu F; Li X; Wang M; Wen J; Yi B; Shen J; Ma C; Fu T; Tu J Plant Biotechnol J; 2018 Apr; 16(4):911-925. PubMed ID: 28929638 [TBL] [Abstract][Full Text] [Related]
11. Defense against Sclerotinia sclerotiorum in Arabidopsis is dependent on jasmonic acid, salicylic acid, and ethylene signaling. Guo X; Stotz HU Mol Plant Microbe Interact; 2007 Nov; 20(11):1384-95. PubMed ID: 17977150 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of Three Glucosinolate Biosynthesis Genes in Brassica napus Identifies Enhanced Resistance to Sclerotinia sclerotiorum and Botrytis cinerea. Zhang Y; Huai D; Yang Q; Cheng Y; Ma M; Kliebenstein DJ; Zhou Y PLoS One; 2015; 10(10):e0140491. PubMed ID: 26465156 [TBL] [Abstract][Full Text] [Related]
13. Genome-wide identification of the NPR1-like gene family in Brassica napus and functional characterization of BnaNPR1 in resistance to Sclerotinia sclerotiorum. Wang Z; Ma LY; Li X; Zhao FY; Sarwar R; Cao J; Li YL; Ding LN; Zhu KM; Yang YH; Tan XL Plant Cell Rep; 2020 Jun; 39(6):709-722. PubMed ID: 32140767 [TBL] [Abstract][Full Text] [Related]
14. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum. Cao JY; Xu YP; Cai XZ J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552 [TBL] [Abstract][Full Text] [Related]
15. Tight regulation of the interaction between Brassica napus and Sclerotinia sclerotiorum at the microRNA level. Cao JY; Xu YP; Zhao L; Li SS; Cai XZ Plant Mol Biol; 2016 Sep; 92(1-2):39-55. PubMed ID: 27325118 [TBL] [Abstract][Full Text] [Related]
16. Microsensor in vivo monitoring of oxidative burst in oilseed rape (Brassica napus L.) leaves infected by Sclerotinia sclerotiorum. Xu Q; Liu SY; Zou QJ; Guo XL; Dong XY; Li PW; Song DY; Chen H; Zhao YD Anal Chim Acta; 2009 Jan; 632(1):21-5. PubMed ID: 19100878 [TBL] [Abstract][Full Text] [Related]
17. Screening of microRNAs and target genes involved in Sclerotinia sclerotiorum (Lib.) infection in Brassica napus L. Xie L; Jian H; Dai H; Yang Y; Liu Y; Wei L; Tan M; Li J; Liu L BMC Plant Biol; 2023 Oct; 23(1):479. PubMed ID: 37807039 [TBL] [Abstract][Full Text] [Related]
18. Detecting the Hormonal Pathways in Oilseed Rape behind Induced Systemic Resistance by Trichoderma harzianum TH12 to Sclerotinia sclerotiorum. Alkooranee JT; Aledan TR; Ali AK; Lu G; Zhang X; Wu J; Fu C; Li M PLoS One; 2017; 12(1):e0168850. PubMed ID: 28045929 [TBL] [Abstract][Full Text] [Related]
19. Proteome changes in leaves of Brassica napus L. as a result of Sclerotinia sclerotiorum challenge. Liang Y; Srivastava S; Rahman MH; Strelkov SE; Kav NN J Agric Food Chem; 2008 Mar; 56(6):1963-76. PubMed ID: 18290614 [TBL] [Abstract][Full Text] [Related]
20. Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Dong X; Ji R; Guo X; Foster SJ; Chen H; Dong C; Liu Y; Hu Q; Liu S Planta; 2008 Jul; 228(2):331-40. PubMed ID: 18446363 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]