These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 19245405)
21. Desulfotomaculum hydrothermale sp. nov., a thermophilic sulfate-reducing bacterium isolated from a terrestrial Tunisian hot spring. Haouari O; Fardeau ML; Cayol JL; Casiot C; Elbaz-Poulichet F; Hamdi M; Joseph M; Ollivier B Int J Syst Evol Microbiol; 2008 Nov; 58(Pt 11):2529-35. PubMed ID: 18984688 [TBL] [Abstract][Full Text] [Related]
22. Dissimilatory reduction of Cr(VI), Fe(III), and U(VI) by Cellulomonas isolates. Sani RK; Peyton BM; Smith WA; Apel WA; Petersen JN Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):192-9. PubMed ID: 12382063 [TBL] [Abstract][Full Text] [Related]
23. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag. Chai L; Huang S; Yang Z; Peng B; Huang Y; Chen Y J Hazard Mater; 2009 Aug; 167(1-3):516-22. PubMed ID: 19246154 [TBL] [Abstract][Full Text] [Related]
24. Dissimilatory Fe(III) reduction by an electrochemically active lactic acid bacterium phylogenetically related to Enterococcus gallinarum isolated from submerged soil. Kim GT; Hyun MS; Chang IS; Kim HJ; Park HS; Kim BH; Kim SD; Wimpenny JW; Weightman AJ J Appl Microbiol; 2005; 99(4):978-87. PubMed ID: 16162251 [TBL] [Abstract][Full Text] [Related]
25. In vitro reduction of hexavalent chromium by cytoplasmic fractions of Pannonibacter phragmitetus LSSE-09 under aerobic and anaerobic conditions. Xu L; Luo M; Jiang C; Wei X; Kong P; Liang X; Zhao J; Yang L; Liu H Appl Biochem Biotechnol; 2012 Feb; 166(4):933-41. PubMed ID: 22161214 [TBL] [Abstract][Full Text] [Related]
26. Isolation and characterization of Cr(VI)-reducing actinomycetes from estuarine sediments. Terahara T; Xu X; Kobayashi T; Imada C Appl Biochem Biotechnol; 2015 Apr; 175(7):3297-309. PubMed ID: 25672321 [TBL] [Abstract][Full Text] [Related]
27. Identification and hexavalent chromium reduction characteristics of Pannonibacter phragmitetus. Shi Y; Chai L; Yang Z; Jing Q; Chen R; Chen Y Bioprocess Biosyst Eng; 2012 Jun; 35(5):843-50. PubMed ID: 22179413 [TBL] [Abstract][Full Text] [Related]
28. Isolation and characterization of Cr(VI) reducing Cellulomonas spp. from subsurface soils: implications for long-term chromate reduction. Viamajala S; Smith WA; Sani RK; Apel WA; Petersen JN; Neal AL; Roberto FF; Newby DT; Peyton BM Bioresour Technol; 2007 Feb; 98(3):612-22. PubMed ID: 16644211 [TBL] [Abstract][Full Text] [Related]
29. Bioremediation of Cr(VI) in contaminated soils. Krishna KR; Philip L J Hazard Mater; 2005 May; 121(1-3):109-17. PubMed ID: 15885411 [TBL] [Abstract][Full Text] [Related]
30. Chromium (VI) reduction in activated sludge bacteria exposed to high chromium loading: Brits culture (South Africa). Molokwane PE; Meli KC; Nkhalambayausi-Chirwa EM Water Res; 2008 Nov; 42(17):4538-48. PubMed ID: 18760438 [TBL] [Abstract][Full Text] [Related]
31. Efficient removal of hexavalent chromium by a tolerant Streptomyces sp. affected by the toxic effect of metal exposure. Morales DK; Ocampo W; Zambrano MM J Appl Microbiol; 2007 Dec; 103(6):2704-12. PubMed ID: 18045449 [TBL] [Abstract][Full Text] [Related]
32. Caldanaerovirga acetigignens gen. nov., sp. nov., an anaerobic xylanolytic, alkalithermophilic bacterium isolated from Trego Hot Spring, Nevada, USA. Wagner ID; Ahmed S; Zhao W; Zhang CL; Romanek CS; Rohde M; Wiegel J Int J Syst Evol Microbiol; 2009 Nov; 59(Pt 11):2685-91. PubMed ID: 19625440 [TBL] [Abstract][Full Text] [Related]
33. Thiomonas bhubaneswarensis sp. nov., an obligately mixotrophic, moderately thermophilic, thiosulfate-oxidizing bacterium. Panda SK; Jyoti V; Bhadra B; Nayak KC; Shivaji S; Rainey FA; Das SK Int J Syst Evol Microbiol; 2009 Sep; 59(Pt 9):2171-5. PubMed ID: 19605731 [TBL] [Abstract][Full Text] [Related]
35. Environmental and kinetic parameters for Cr(VI) bioreduction by a bacterial monoculture purified from Cr(VI)-resistant consortium. Okeke BC; Laymon J; Crenshaw S; Oji C Biol Trace Elem Res; 2008; 123(1-3):229-41. PubMed ID: 18317706 [TBL] [Abstract][Full Text] [Related]
36. Microbial reduction of hexavalent chromium by landfill leachate. Li Y; Low GK; Scott JA; Amal R J Hazard Mater; 2007 Apr; 142(1-2):153-9. PubMed ID: 17046156 [TBL] [Abstract][Full Text] [Related]
37. Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Das S; Mishra J; Das SK; Pandey S; Rao DS; Chakraborty A; Sudarshan M; Das N; Thatoi H Chemosphere; 2014 Feb; 96():112-21. PubMed ID: 24091247 [TBL] [Abstract][Full Text] [Related]
38. Bioaugmentation of chromium-polluted soil microcosms with Candida tropicalis diminishes phytoavailable chromium. Bahafid W; Tahri Joutey N; Sayel H; Boularab I; El Ghachtouli N J Appl Microbiol; 2013 Sep; 115(3):727-34. PubMed ID: 23773206 [TBL] [Abstract][Full Text] [Related]
39. Hexavalent chromium removal in vitro and from industrial wastes, using chromate-resistant strains of filamentous fungi indigenous to contaminated wastes. Acevedo-Aguilar FJ; Espino-Saldaña AE; Leon-Rodriguez IL; Rivera-Cano ME; Avila-Rodriguez M; Wrobel K; Wrobel K; Lappe P; Ulloa M; Gutiérrez-Corona JF Can J Microbiol; 2006 Sep; 52(9):809-15. PubMed ID: 17110972 [TBL] [Abstract][Full Text] [Related]
40. Aerobic chromate reduction by chromium-resistant bacteria isolated from serpentine soil. Pal A; Paul AK Microbiol Res; 2004; 159(4):347-54. PubMed ID: 15646381 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]